精英家教网 > 高中数学 > 题目详情

(12分)设命题p:关于x的不等式的解集是,命题q:函数的定义域为R.

(1)如果“p且q”为真,求实数a的取值范围;

(2)如果“p且q”为假,“p或q”为真,求实数a的取值范围.

 

【答案】

解:(1)若p真,即,若p假,即;……………………3分

若q真,即,若q假,即.        …………………………………6分

而“p且q”为真,即p真且q真,所以 ,

所以实数a的取值范围是:;      …………………………………8分

(2)依题意,p,q一真一假,即,亦即 ,

所以实数a的取值范围是:。     ……………………………12分

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整数的个数.
(1)求an并且证明{an}是等差数列;
(2)设m、k、p∈N*,m+p=2k,求证:
1
Sm
+
1
Sp
2
Sk

(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①x2≠y2?x≠y或x≠-y;
②命题“若a,b是偶数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a、b都不是偶数”;
③若“p或q”为假命题,则“非p且非q”是真命题;
④已知a、b、c是实数,关于x的不等式ax2+bx+c≤0的解集是空集,必有a>0且△≤0;
⑤设f1(x)=
2
1+x
,fn+1(x)=f1[fn(x)],且an=
fn(0)-1
fn(0)+2
,则a2010=(-
1
2
)2011

正确的是
③⑤
③⑤
.(填番号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x (n∈N*)的解集中整数的个数.数列{an}的前n项和为Sn
(Ⅰ)求an
(Ⅱ)设m,k,p∈N*,m+p=2k,求证:
1
Sm
+
1
Sp
2
Sk

(Ⅲ)对于(Ⅱ)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:关于x的不等式a1x2+b1x+c1>0与a2x2+b2x+c2>0的解集相同;命题Q:
a1
a2
=
b1
b2
=
c1
c2
,则命题Q是命题P的(  )
A、充要条件
B、充分非必要条件
C、必要非充分条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三高考压轴数学试卷(解析版) 题型:解答题

设数列的通项是关于x的不等式  的解集中整数的个数.

(1)求并且证明是等差数列;

(2)设m、k、p∈N*,m+p=2k,求证:

(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,

请证明你的结论,如果不成立,请说明理由.

 

查看答案和解析>>

同步练习册答案