【题目】已知拋物线
:
(
),过点
且斜率为1的直线
与拋物线
交于
,
两点,且
为
的中点.
(1)求拋物线
的方程;
(2)设直线
与
轴交点为
,若过
的直线
与拋物线
交于
,
两点,求证:
为定值.
科目:高中数学 来源: 题型:
【题目】某班有
个小组,甲、乙、丙三人分别在不同的小组.某次数学考试成绩公布情况如下:甲和三人中等第
小组的那位的成绩不一样,丙比三人中第
组的那位的成绩低,三人中第
小组的那位比乙的成绩高.若将甲、乙、丙三人按数学成绩由高到低排列,则正确的排列顺序是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,圆
的参数方程为
(
为参数),在以原点
为极点,
轴的非负半轴为极轴建立的极坐标系中,直线
的极坐标方程为
.
(1)求圆
的普通方程和直线
的直角坐标方程;
(2)设直线
与
轴,
轴分别交于
,
两点,点
是圆
上任一点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如表数据:
处罚金额 | 5 | 10 | 15 | 20 |
会闯红灯的人数 | 50 | 40 | 20 | 10 |
若用表中数据所得频率代替概率.
(1)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?
(2)将选取的200人中会闯红灯的市民分为两类:
类市民在罚金不超过10元时就会改正行为;
类是其他市民.现对
类与
类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为
类市民的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
平面直角坐标系xOy中,曲线C:
.直线l经过点P(m,0),且倾斜角为
.O为极点,以x轴正半轴为极轴,建立极坐标系.
(Ⅰ)写出曲线C的极坐标方程与直线l的参数方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,且|PA|·|PB|=1,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
经过点
,其倾斜角为
.以原点
为极点,以
轴非负半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系.设曲线
的极坐标方程为
.
(1)写出直线
的参数方程,若直线
与曲线
有公共点,求
的取值范围.
(2)设
为曲线
上任意一点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1, 在直角梯形
中,
,
,
,
为线段
的中点. 将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(1)求证:
平面
;
(2)求二面角
的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
的最大值为
.
(Ⅰ)求实数
的值;
(Ⅱ)当
时,讨论函数
的单调性;
(Ⅲ)当
时,令
,是否存在区间
.使得函数
在区间
上的值域为
若存在,求实数
的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com