精英家教网 > 高中数学 > 题目详情

数列

(Ⅰ)求并求数列的通项公式;

(Ⅱ)设证明:当

解:(Ⅰ)因为

一般地,当时,

,即

所以数列是首项为1、公差为1的等差数列,因此

时,

所以数列是首项为2、公比为2的等比数列,因此

故数列的通项公式为

(Ⅱ)由(Ⅰ)知,

                ①

             ②

   ①-②得,

                =

   所以

   要证明当时,成立,只需证明当时,成立.

   证法一

   (1)当n=6时,成立.

   (2)假设当时不等式成立,即

   则当n=k+1时,

   由(1)、(2)所述,当n≥6时,,即当n≥6时,

   证法二

   令,则

   所以当时,.因此当时,

于是当时,

综上所述,当时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:a1a2a3a4a5a6a7a8a9a10…记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1.Sn为数列{bn}的前n项和,且满足
2bn
bnSn-
S
2
n
=1(n≥2)

(Ⅰ)证明数列{
1
Sn
}
成等差数列,并求数列{bn}的通项公式;
(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a81=-
4
91
时,求上表中第k(k≥3)行所有项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

将数列{an}中的所有项按每组比前一组项数多一项的规则分组如下:(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10),…每一组的第1个数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足Sn+1(Sn+2)=Sn(2-Sn+1),n∈N*
(I)求证:数列{
1
Sn
}成等差数列,并求出数列{bn}的通项公式;
(Ⅱ)若从第2组起,每一组中的数自左向右均构成等比数列,且公比q为同一个正数,当a18=-
2
15
时,求公比q的值;   
(Ⅲ)在(Ⅱ)的条件下,记每组中最后一数a1,a3,a6,a10,…构成的数列为{cn},设dn=n2(n-1)•cn,求数列{dn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表.记表中第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1.Sn为数列{bn}的前n项和,且满足2bn=bnSn-Sn2(n≥2,n∈N*).
(1)证明数列{
1
Sn
}是等差数列,并求数列{bn}的通项公式;
(2)图中,若从第三行起,每一行中的数按从左到右的顺序构成等比数列,且公比为同一个正数.当a81=-
4
91
时,求上表中第k(k≥3)行所有数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,0)作曲线C:y=x2(x∈(0,+∞)的切线,切点为M1,设M1在x轴上的投影是点P1.又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2,….依此下去,得到一系列点M1,M2…,Mn,…,设它们的横坐标a1,a2,…,an,…,构成数列为{an}.
(1)求证数列{an}是等比数列,并求其通项公式;
(2)令bn=
nan
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将数列{an}中的所有项按每组比前一组项数多一项的规则分组如下:(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10),…每一组的第1个数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1,Sn为数列{bn}的前n项和,且满足Sn+1(Sn+2)=Sn(2-Sn+1),n∈N*
(I)求证:数列{
1
Sn
}成等差数列,并求出数列{bn}的通项公式;
(Ⅱ)若从第2组起,每一组中的数自左向右均构成等比数列,且公比q为同一个正数,当a18=-
2
15
时,求公比q的值;   
(Ⅲ)在(Ⅱ)的条件下,记每组中最后一数a1,a3,a6,a10,…构成的数列为{cn},设dn=n2(n-1)•cn,求数列{dn}的前n项和Tn

查看答案和解析>>

同步练习册答案