【题目】定义向量的外积:
叫做向量
与
的外积,它是一个向量,满足下列两个条件:
(1)
,
,且
,
和
构成右手系(即三个向量两两垂直,且三个向量的方向依次与拇指、食指、中指的指向一致);
(2)
的模
(
表示向量
、
的夹角);
如图,在正方体
,有以下四个结论:
![]()
①
与
方向相反;
②
;
③
与正方体表面积的数值相等;
④
与正方体体积的数值相等.
这四个结论中,正确的结论有( )个
A.4B.3C.2D.1
科目:高中数学 来源: 题型:
【题目】某数学小组到进行社会实践调查,了解到某公司为了实现1000万元利润目标,准备制定激励销售人员的奖励方案:在销售利润超过10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.同学们利用函数知识,设计了如下的函数模型,其中符合公司要求的是(参考数据:
,
)( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,直线
的参数方程为
为参数
,直线
与曲线
分别交于
两点.
(1)若点
的极坐标为
,求
的值;
(2)求曲线
的内接矩形周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的方程为
,其焦点为
,
为过焦点
的抛物线
的弦,过
分别作抛物线的切线
,
,设
,
相交于点
.
(1)求
的值;
(2)如果圆
的方程为
,且点
在圆
内部,设直线
与
相交于
,
两点,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,说法正确的个数是( )
(1)若p
q为真命题,则p,q均为真命题
(2)命题“x0∈R,
0”的否定是“x∈R,2x
0”
(3)“
”是“x∈[1,2],x2﹣
恒成立”的充分条件
(4)在△ABC中,“
”是“sinA>sinB”的必要不充分条件
(5)命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题p:
x∈R,ax2﹣2ax+1>0,命题q:指数函数f(x)=ax(a>0且a≠1)为减函数,则P是q的( )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知直线
的参数方程为![]()
.以坐标原点
为极点,
轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)若曲线
上的点到直线l的最大距离为
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面几个命题中,假命题是( )
A. “若
,则
”的否命题
B. “
,函数
在定义域内单调递增”的否定
C. “
是函数
的一个周期”或“
是函数
的一个周期”
D. “
”是“
”的必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com