【题目】函数f(x)=ax5﹣bx+1,若f(lg(log510))=5,求f(lg(lg5))的值( )
A.﹣3
B.5
C.﹣5
D.﹣9
【答案】A
【解析】解:lg(log510))=lg(
))=﹣lg(lg5),则设t=lg(lg5),
则由f(lg(log510))=f(﹣t)=5,
∵f(x)=ax5﹣bx+1,
∴f(﹣t)=﹣at5+bt+1=5,
则f(t)=at5﹣bt+1,
两式相加得f(t)+5=2,
则f(t)=2﹣5=﹣3,
即f(lg(lg5))的值为﹣3,
故选:A
【考点精析】掌握函数奇偶性的性质是解答本题的根本,需要知道在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2﹣(m﹣1)x+2m
(1)若函数f(x)>0在(0,+∞)上恒成立,求m的取值范围;
(2)若函数f(x)在(0,1)内有零点,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,
轴的正半轴为极轴,建立极坐标系,两坐标系中取相同的单位长度,已知曲线
的方程为
,点
.
(1)求曲线
的直角坐标方程和点
的直角坐标;
(2)设
为曲线
上一动点,以
为对角线的矩形
的一边平行于极轴,求矩形
周长的最小值及此时点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥
中,四边形
为矩形,
为等腰三角形,
,平面
平面
,且
,
,
分别为
的中点.
![]()
(1)证明:
平面
;
(2)证明:平面
平面
;
(3)求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的部分图象如图所示.
![]()
(1) 求函数
的解析式;
(2) 如何由函数
的通过适当图象的变换得到函数
的图象, 写出变换过程;
(3) 若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U=R,A={x|x≥3},B={x|x2﹣8x+7≤0},C={x|x≥a﹣1}
(1)求A∩B,A∪B;
(2)若A∩C=C,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+alnx. (Ⅰ)当a=﹣2时,求函数f(x)的单调区间和极值;
(Ⅱ)若g(x)=f(x)+
在[1,+∞)上是单调增函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C的对边分别为a,b,c.已知
=
.
(1)求角A的大小;
(2)当a=6时,求△ABC面积的最大值,并指出面积最大时△ABC的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com