已知,椭圆C以过点A(1,
),两个焦点为(-1,0)(1,0)。
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点在
轴上,且过点
.![]()
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆
相切的直线
交抛物线于不同的两点
若抛物线上一点
满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.![]()
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l, F2N⊥l.求四边形F1MNF2面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
是直角坐标平面内的动点,点
到直线
(
是正常数)的距离为
,到点
的距离为
,且
1.
(1)求动点P所在曲线C的方程;
(2)直线
过点F且与曲线C交于不同两点A、B,分别过A、B点作直线
的垂线,对应的垂足分别为
,求证
=
;
(3)记
,
,![]()
(A、B、
是(2)中的点),
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
:
上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线
的方程;
(Ⅱ)设直线
与抛物线
交于不同两点
,若满足
,证明直线
恒过定点,并求出定点
的坐标.
(Ⅲ)试把问题(Ⅱ)的结论推广到任意抛物线
:
中,请写出结论,不用证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆E:
的离心率为
,右焦点为F,且椭圆E上的点到点F距离的最小值为2.
(1)求椭圆E的方程;
(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.
(ⅰ)当过A,F,N三点的圆半径最小时,求这个圆的方程;
(ⅱ)若
,求△ABM的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米建立适当的平面直角坐标系,求抛物线方程.现将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少? ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N (点M在点N的右侧),且
。椭圆D:
的焦距等于
,且过点![]()
![]()
( I ) 求圆C和椭圆D的方程;
(Ⅱ) 若过点M的动直线
与椭圆D交于A、B两点,若点N在以弦AB为直径的圆的外部,求直线
斜率的范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com