已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.![]()
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l, F2N⊥l.求四边形F1MNF2面积S的最大值.
科目:高中数学 来源: 题型:解答题
如图所示,设抛物线
的焦点为
,且其准线与
轴交于
,以
,
为焦点,离心率
的椭圆
与抛物线
在
轴上方的一个交点为P.![]()
(1)当
时,求椭圆
的方程;
(2)是否存在实数
,使得
的三条边的边长是连续的自然数?若存在,求出这样的实数
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
:
的左、右焦点分别是
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为
。
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
是椭圆
上除长轴端点外的任一点,连接
,设
的角平分线
交
的长轴于点
,求
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点
作斜率为
的直线
,使
与椭圆
有且只有一个公共点,设直线的
斜率分别为
。若
,试证明
为定值,并求出这个定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线
的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线
相交于不同的两点M、N.当
时,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的一个顶点为
,焦点在
轴上,中心在原点.若右焦点到直线
的距离为3.
(1)求椭圆的标准方程;
(2)设直线
与椭圆相交于不同的两点
.当
时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点在x轴上,离心率为
,短轴长为4
.![]()
(I)求椭圆C的标准方程;
(II)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为
.
①求四边形APBQ面积的最大值;
②设直线PA的斜率为
,直线PB的斜率为
,判断
+
的值是否为常数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,椭圆C以过点A(1,
),两个焦点为(-1,0)(1,0)。
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的左焦点为
,过点
的直线交椭圆于
两点,线段
的中点为
,
的中垂线与
轴和
轴分别交于
两点.![]()
(1)若点
的横坐标为
,求直线
的斜率;
(2)记△
的面积为
,△
(
为原点)的面积为
.试问:是否存在直线
,使得
?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,设点
(
),直线
:
,点
在直线
上移动,
是线段
与
轴的交点, 过
、
分别作直线
、
,使
,
.![]()
(1)求动点
的轨迹
的方程;
(2)在直线
上任取一点
做曲线
的两条切线,设切点为
、
,求证:直线
恒过一定点;
(3)对(2)求证:当直线
的斜率存在时,直线
的斜率的倒数成等差数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com