【题目】如图:多面体
中,四边形
为矩形,二面角
为60°,
,
,
,
,
.
![]()
(1)求证:
平面
;
(2)
线段
上一点,若锐二面角
的正弦值为
,求
.
科目:高中数学 来源: 题型:
【题目】椭圆
的左、右焦点分别为
、
,离心率为
,过焦点
且垂直于x轴的直线被椭圆C截得的线段长为1.
Ⅰ
求椭圆C的方程;
Ⅱ
点
为椭圆C上一动点,连接
,
,设
的角平分线PM交椭圆C的长轴于点
,求实数m的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
经过点
,左、右焦点分别是
,
,
点在椭圆上,且满足
的
点只有两个.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
且不垂直于坐标轴的直线
交椭圆
于
,
两点,在
轴上是否存在一点
,使得
的角平分线是
轴?若存在求出
,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AA1=2,AB=1,E为AD中点,F为CC1中点.
![]()
(1)求证:AD⊥D1F;
(2)求证:CE//平面AD1F;
(3)求AA1与平面AD1F成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与
的浓度是否相关,现采集到某城市周一至周五某时间段车流量与
浓度的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量 | 50 | 51 | 54 | 57 | 58 |
| 39 | 40 | 42 | 44 | 45 |
(1)根据上表数据,求出这五组数据组成的散点图的样本中心坐标;
(2)用最小二乘法求出
关于
的线性回归方程
;
(3)若周六同一时间段车流量是100万辆,试根据(2)求出的线性回归方程预测,此时
的浓度是多少?
(参考公式:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共14分)
如图,在四棱锥
中,
平面
,底面
是菱形,
.
![]()
(Ⅰ)求证:
平面![]()
(Ⅱ)若
求
与
所成角的余弦值;
(Ⅲ)当平面
与平面
垂直时,求
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,椭圆
离心率为
,
、
是椭圆C的短轴端点,且
到焦点的距离为
,点M在椭圆C上运动,且点M不与
、
重合,点N满足
.
![]()
(1)求椭圆C的方程;
(2)求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论中错误的是( )
A.“﹣2<m<3”是方程
表示椭圆”的必要不充分条件
B.命题p:
,使得
的否定![]()
![]()
C.命题“若
,则方程
有实根”的逆否命题是真命题
D.命题“若
,则
且
”的否命题是“若
,则
或
”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,圆
上有一点
,且点
,
的极坐标分别为
,
.
(1)求圆
的直角坐标方程及直线
的普通方程;
(2)设直线
与坐标轴的两个交点分别为
,
,点
在圆
上运动,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com