【题目】
是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与
的浓度是否相关,现采集到某城市周一至周五某时间段车流量与
浓度的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量 | 50 | 51 | 54 | 57 | 58 |
| 39 | 40 | 42 | 44 | 45 |
(1)根据上表数据,求出这五组数据组成的散点图的样本中心坐标;
(2)用最小二乘法求出
关于
的线性回归方程
;
(3)若周六同一时间段车流量是100万辆,试根据(2)求出的线性回归方程预测,此时
的浓度是多少?
(参考公式:
,
)
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
极坐标系的极点为直角坐标系
的原点,极轴为
轴的正半轴,两种坐标系中的长度单位相同,已知曲线
的极坐标方程为
.
(1)求
的直角坐标方程;
(2)直线
(
为参数)与曲线
交于
两点,与
轴交于
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某精准扶贫帮扶单位,为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助精准扶贫户利用互联网电商渠道销售当地特产苹果.苹果单果直径不同单价不同,为了更好的销售,现从该精准扶贫户种植的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间[50,95]内(单位:
),统计的茎叶图如图所示:
![]()
(Ⅰ)从单果直径落在[72,80)的苹果中随机抽取3个,求这3个苹果单果直径均小于76
的概率;
(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.直径位于[65,90)内的苹果称为优质苹果,对于该精准扶贫户的这批苹果,某电商提出两种收购方案:
方案
:所有苹果均以5元/千克收购;
方案
:从这批苹果中随机抽取3个苹果,若都是优质苹果,则按6元/干克收购;若有1个非优质苹果,则按5元/千克收购;若有2个非优质苹果,则按4.5元/千克收购;若有3个非优质苹果,则按4元/千克收购.
请你通过计算为该精准扶贫户推荐收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知梯形
中,
,
,
,四边形
为矩形,
,平面
平面
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求平面
与平面
所成锐二面角的余弦值;
(Ⅲ)在线段
上是否存在点
,使得直线
与平面
所成角的正弦值为
,若存在,求出线段
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术商功》中阐述:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,对该几何体有如下描述:
①四个侧面都是直角三角形;
②最长的侧棱长为
;
③四个侧面中有三个侧面是全等的直角三角形;
④外接球的表面积为24π.
其中正确的描述为____.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线
:
的焦点为
,直线
与
交于
,
两点,
的面积为
.
(1)求
的方程;
(2)若
,
是
上的两个动点,
,试问:是否存在定点
,使得
?若存在,求
的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在
内,发布成绩使用等级制各等级划分标准见下表,规定:
、
、
三级为合格等级,
为不合格等级.
百分制 |
|
|
|
|
等级 |
|
|
|
|
为了解该校高一年级学生身体素质情况,从中抽取了
名学生的原始成绩作为样本进行统计,按照
的分组作出频率分布直方图如图
所示,样本中分数在
分及以上的所有数据的茎叶图如图
所示.
![]()
(1)求
和频率分布直方图中的
的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生任选
人,求至少有
人成绩是合格等级的概率;
(3)在选取的样本中,从
、
两个等级的学生中随机抽取了
名学生进行调研,记
表示所抽取的
名学生中为
等级的学生人数,求随机变量
的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com