精英家教网 > 高中数学 > 题目详情
已知等式cosα•cos2α=,cosα•cos2α•cos4α=,…,请你写出一个具有一般性的等式,使你写出的等式包含了已知等式(不要求证明),那么这个等式是:   
【答案】分析:分析两边三角的函数名称及各个角的构成及关系,进行归纳写出即可.
解答:解:三角关系式的左边三角函数名均为余弦,角为α的乘方,可以得出一般性等式为
cosα•cos2α•cos4α×…×cos2n-1α=
故答案为:cosα•cos2α•cos4α×…×cos2n-1α=
点评:本题考查合情推理的能力,善于寻找数字规律,是解决数字型归纳推理的共同点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点.
(1)求直线ON(O为坐标原点)的斜率KON
(2)对于椭圆C上任意一点M,试证:总存在角θ(θ∈R)使等式:
OM
=cosθ
OA
+sinθ
OB
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,cosα),
b
=(1,sinβ),
c
=(3,1),且(
a
+
b
)∥
c

(1)若α=
π
3
,求cos2β的值;
(2)证明:不存在角α,使得等式|
a
+
c
|=|
a
-
c
|成立;
(3)求
b
c
-
a
2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点;又函数y=asinx+3bcosx图象的一条对称轴的方程是x=
π
6
.(1)求椭圆C的离心率e与直线AB的方程;(2)对于任意一点M∈C,试证:总存在角θ(θ∈R)使等式
OM
=cosθ
OA
+sinθ
OB
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)定理:若函数f(x)在闭区间[m,n]上是连续的单调函数,且f(m)f(n)<0,则存在唯一一个x0∈(m,n)使f(x0)=0.已知f(x)=sinx(0≤x≤
π
2
)

(1)若g(x)=f(cosx)-ax(0≤x≤
π
2
)
是减函数,求a的取值范围.
(2)是否存在c,d∈(0,
π
2
)使f(cosc)=c和cos[f(d)]=d
同时成立,若存在,指出c、d之间的等式关系,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆CAB两点,N为弦AB的中点。

(1)求直线ONO为坐标原点)的斜率KON

(2)对于椭圆C上任意一点M ,试证:总存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

同步练习册答案