(本题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,
BAD=90°,PA
底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.
![]()
(Ⅰ)求证:PB
平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.
(I)利用线面垂直得AD^平面PAB,
∴AD^PB.根据等腰三角形得AN^PB.推出PB^平面ADMN.
(II)V=
S×PN=
.
【解析】
试题分析:(I)∵PA^底面ABCD,ÐBAD=90°,AB∩AD=D,∴AD^平面PAB,
又PBÌ平面PAB,∴AD^PB.……3分
∵PA=AB,∴DPAB为等腰直角三角形,N为PB的中点,∴AN^PB.
∵AN∩AD=D,∴PB^平面ADMN.……6分
(II)由(Ⅰ)PB^平面ADMN,
∴PN为四棱锥P-ADMN的高,且PN=
PB=
.……8分
四边形ADMN为直角梯形,且MN![]()
BC,∴MN=
,AN=
,
∴四边形ADMN的面积为S=
(2+
)×
=
,……11分
∴四棱锥P-ADMN的体积V=
S×PN=
. ……12分
考点:本题主要考查立体几何中的垂直关系,体积的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤。本题通过空间直角坐标系,利用向量知识可简化证明过程。把证明问题转化成向量的坐标运算,这种方法带有方向性。
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com