【题目】已知直线
及点
.
(1)证明直线
过某定点,并求该定点的坐标;
(2)当点
到直线
的距离最大时,求直线
的方程.
【答案】(1)证明见解析,定点坐标为
;(2)15x+24y+2=0.
【解析】试题分析:(1)直线l的方程可化为 a(2x+y+1)+b(-x+y-1)=0,由
,即可解得定点;
(2)由(1)知直线l恒过定点A
,当直线l垂直于直线PA时,点P到直线l的距离最大,利用点斜式求直线方程即可.
试题解析:
(1)证明:直线l的方程可化为 a(2x+y+1)+b(-x+y-1)=0,
由
,
得
,所以直线l恒过定点
.
(2)由(1)知直线l恒过定点A
,
当直线l垂直于直线PA时,点P到直线l的距离最大.
又直线PA的斜率
,所以直线l的斜率kl=-
.
故直线l的方程为
,
即15x+24y+2=0.
科目:高中数学 来源: 题型:
【题目】如图四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2
,BC=4
,PA=2,点M在线段PD上.![]()
(1)求证:AB⊥PC.
(2)若二面角M﹣AC﹣D的大小为45°,求BM与平面PAC所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程
.
(Ⅰ)若此方程表示圆,求
的取值范围;
(Ⅱ)若(Ⅰ)中的圆与直线
相交于
,
两点,且
(
为坐标原点),求
;
(Ⅲ)在(Ⅱ)的条件下,求以
为直径的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,圆
,点
,点
是圆
上的动点,线段
的垂直平分线交线段
于点
,设
分别为点
的横坐标,定义函数
,给出下列结论:
①
;②
是偶函数;③
在定义域上是增函数;
④
图象的两个端点关于圆心
对称;
⑤动点
到两定点
的距离和是定值.
其中正确的是__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)当
时,求函数
的值域;
(2)如果对任意的
,不等式
恒成立,求实数
的取值范围;
(3)是否存在实数
,使得函数
的最大值为0,若存在,求出
的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称函数
的一个上界.已知函数
,
.
(1)若函数
为奇函数,求实数
的值;
(2)在第(1)的条件下,求函数
在区间
上的所有上界构成的集合;
(3)若函数
在
上是以3为上界的有界函数,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com