分析 (2)观察可得${1^3}+{2^3}+{3^3}+…+{n^3}={\frac{{{n^2}(n+1)}}{4}^2}$,
(1)用数学归纳法证明:①当n=1时,去证明等式成立;②假设当n=k时,等时成立,用上归纳假设后,去证明当n=k+1时,等式也成立即可.
解答 解:(1)根据上述规律,写出第n个等式;${1^3}+{2^3}+{3^3}+…+{n^3}={\frac{{{n^2}(n+1)}}{4}^2}$或13+23+33+…+n3=(1+2+3+…+n)2
(2)证明如下,①当n=1时,左边=1,右边=$\frac{1}{4}$(1+1)2=1,
∴等式成立,
②假设当n=k时,等时成立,即13+23+33+…+k3=$\frac{1}{4}$k2(k+1)2.
那么,当n=k+1时,有13+23+33+…+k3+(k+1)3=$\frac{1}{4}$k2(k+1)2+(k+1)3,
=(k+1)2•($\frac{{k}^{2}}{4}$+k+1)
=(k+1)2•$\frac{{k}^{2}+4k+4}{4}$
=$\frac{(k+1)^{2}(k+2)^{2}}{4}$
═$\frac{1}{4}$(k+1)2(k+1+1)2.
这就是说,当n=k+1时,等式也成立,
根据①②,可知对n∈N*等式成立.
点评 本题考查数学归纳法证明有关正整数命题的方法步骤,特别是②是关键,是核心,也是数学归纳法证明命题的难点所在,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | i | B. | -i | C. | -25i | D. | 25i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (log2x)′=$\frac{1}{xln2}$ | B. | (x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$ | ||
| C. | (cosx)′=sinx | D. | ($\frac{{e}^{x}}{x}$)′=$\frac{x{e}^{x}+{e}^{x}}{{x}^{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 30 | C. | 50 | D. | 600 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com