【题目】如图,在四棱锥
中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,
.
(1)求证:PD⊥平面PAB;
(2)求直线PB与平面PCD所成角的正弦值.
![]()
【答案】(1)见解析;(2)![]()
【解析】试题分析:(1)由条件得
平面PAD,因此
,再结合
,可得PD⊥平面PAB。(2)取AD的中点O,连PO,CO,可证得OP,OA,OC两两垂直,建立空间直角坐标系,用向量的运算求解。
试题解析:
(1)∵平面PAD⊥平面ABCD, 平面PAD
平面ABCD=AD, AB⊥AD,
∴
平面PAD,
∵
平面PAD,
∴
,
又
,
∴ PD⊥平面PAB。
(2)取AD的中点O,连PO,CO。
∵
,
∴CO⊥AD,
∵PA=PD,
∴PO⊥AD,
∴OP,OA,OC两两垂直,
以O为原点建立如图所示的空间直角坐标系O-xyz,
![]()
则
。
∴
。
设平面PCD的一个法向量为
,
由
,得
。
令
,则
。
设直线PB与平面PCD所成角为
,
则
.
∴直线PB与平面PCD所成角的正弦值为
。
科目:高中数学 来源: 题型:
【题目】如图,抛物线
:
与椭圆
:
在第一象限的交点为
,
为坐标原点,
为椭圆的右顶点,
的面积为
.
![]()
(Ⅰ)求抛物线
的方程;
(Ⅱ)过
点作直线
交
于
、
两点,射线
、
分别交
于
、
两点,记
和
的面积分别为
和
,问是否存在直线
,使得
?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等腰直角三角形ABC的直角顶点A在x轴的正半轴上,B在y轴的正半轴上,C在第一象限,设∠BAO=θ(O为坐标原点),AB=AC=2,当OC的长取得最大值时,tanθ的值为( )
A.![]()
B.﹣1+ ![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
sin2x+2cos2x+m(0≤x≤
).
(1)若函数f(x)的最大值为6,求常数m的值;
(2)若函数f(x)有两个零点x1和x2 , 求m的取值范围,并求x1和x2的值;
(3)在(1)的条件下,若g(x)=(t﹣1)f(x)﹣
(t≥2),讨论函数g(x)的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) ![]()
A.588
B.480
C.450
D.120
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.
![]()
(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价
(单位:元/件,整数)和销量
(单位:件)(
)如下表所示:
售价 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
销量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①请根据下列数据计算相应的相关指数
,并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价
定为多少时?利润
可以达到最大.
|
|
| |
| 49428.74 | 11512.43 | 175.26 |
| 124650 | ||
(附:相关指数
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知中心在原点,离心率为
的椭圆
的一个焦点为圆
:
的圆心.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
是椭圆
上一点,过
作两条斜率之积为
的直线
,
,当直线
,
都与圆
相切时,求
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中,正确的是( )
①两个平面同时垂直第三个平面,则这两个平面可能互相垂直
②方程
表示经过第一、二、三象限的直线
③若一个平面中有4个不共线的点到另一个平面的距离相等,则这两个平面平行
④方程
可以表示经过两点
的任意直线
A. ②③ B. ①④ C. ①②④ D. ①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com