【题目】以下三个命题中:
①设有一个回归方程
=2﹣3x,变量x增加一个单位时,y平均增加3个单位;
②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.
其中真命题的个数为( )
A.0
B.1
C.2
D.3
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a3x+1 , g(x)=(
)5x﹣2 , 其中a>0,且a≠1.
(1)若0<a<1,求满足f(x)<1的x的取值范围;
(2)求关于x的不等式f(x)≥g(x)的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的离心率为
,以原点
为圆心,椭圆
的长半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知点
为动直线
与椭圆
的两个交点,问:在
轴上是否存在定点
,使得
为定值?若存在,试求出点
的坐标和定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在
△
中,
,
,
分别为边
的中点,点
分别为线段
的中点.将△
沿
折起到△
的位置,使
.点
为线段
上的一点,如图2.
![]()
(Ⅰ)求证:
;
(Ⅱ)线段
上是否存在点
使得
平面
?若存在,求出
的长,若不存在,请说明理由;
(Ⅲ)当
时,求直线
与平面
所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
中,已知
对任意
都成立,数列
的前
项和为
.(这里
均为实数)
(1)若
是等差数列,求
的值;
(2)若
,求
;
(3)是否存在实数
,使数列
是公比不为
的等比数列,且任意相邻三项
按某顺序排列后成等差数列?若存在,求出所有
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=
,x∈(﹣2,2)
(1)判断f(x)的奇偶性并说明理由;
(2)求证:函数f(x)在(﹣2,2)上是增函数;
(3)若f(2+a)+f(1﹣2a)>0,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究小组到社区了解参加健美操运动人员的情况,用分层抽样的方法抽取了40人进行调查,按照年龄分成五个小组:
,并绘制成如图所示的频率分布直方图.
(1)求该社区参加健美操运动人员的平均年龄;
(2)如果研究小组从该样本中年龄在
和
的6人中随机地抽取出2人进行深入采访,求被采访的2人,年龄恰好都在
内的概率.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com