【题目】已知函数
(
为自然对数的底数).
(Ⅰ)求函数
的单调区间;
(Ⅱ)若
,
,试求函数
极小值的最大值.
【答案】(1)单调递减区间是
,单调递增区间是
; (2)1.
【解析】
(I)计算
导函数,构造函数
,判定单调性,得到
的单调性,即可。(II)得到
的解析式,结合导函数判定
单调性,得到极小值,构造函数
,结合导函数,计算该函数的极值,即可。
(Ⅰ)易知
,且
.
令
,则
,
∴函数
在
上单调递增,且
.
可知,当
时,
,
单调递减;
当
时,
,
单调递增.
∴函数
的单调递减区间是
,单调递增区间是
.
(Ⅱ)∵
,∴
.
由(Ⅰ)知,
在
上单调递增,
当
时,
;当
时,
,则
有唯一解
.
可知,当
时,
,
单调递减;
当
时,
,
单调递增,
∴函数
在
处取得极小值
,且
满足
.
∴
.
令
,则
.
可知,当
时,
,
单调递增;
当
时,
,
单调递减,
∴
.
∴函数
极小值的最大值为1.
科目:高中数学 来源: 题型:
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15-65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄 |
|
|
|
|
|
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
![]()
(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
参考数据:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
,其中
.
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动、现从这8人中随机抽2人.记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试,已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为
,且甲、乙两人是否答对每个试题互不影响.
(1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;
(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为
,求
的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女士 | 40 | 40 |
(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;
(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为
,写出
的分布列,并求
.
附:
,其中
.
| 0.05 | 0.01 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响.对近
年的年宣传费
和年销售量数据
作了初步处理,得到下面的散点图及一些统计量的值.
![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.附:对于一组数据
,
,
,
,其回归直线
的斜率和截距的最小二乘法估计分别为
,
.
(1)根据散点图判断,
与
在哪一个适宜作为年销售量
关于年宣传费
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据1小问的判断结果及表中数据,建立
关于
的回归方程;
(3)已知这种产品的年利润
与
的关系为
.根据2小问的结果回答下列问题:
①2年宣传费
时,年销售量及年利润的预报值是多少?
②3年宣传费
为何值时,年利润的预报值最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com