精英家教网 > 高中数学 > 题目详情

已知正方体ABCD-A1B1C1D1的棱长为a,求平面A1BC1和平面ACD1的距离.

答案:
解析:

  

  思路分析:本题考查两个平行平面间距离的求法,因为只有两个平行平面之间才有距离可谈,所以需先证平面A1BC1和平面ACD1平行.

  温馨提示:两个平面间的距离可化为线面距,而线面距又可化为点面距,而点面的距离最终化为点点的距离,要求点面距,关键是要找准该点在平面内射影的确切位置.一般地求距离的步骤有:

  (1)作:作(找)出垂线;

  (2)证:即证明作出的线段即为所求的距离;

  (3)解:求解所作出的线段.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P在平面DD1C1C内,PD1=PC1=
2
.求证:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,则四面体A1-C1BD在面A1B1C1D1上的正投影的面积与该四面体表面积之比是
3
6
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O∥面AB1D1
(2)求异面直线AD1与 C1O所成角的大小.

查看答案和解析>>

同步练习册答案