【题目】为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算:电费每月用电不超过100度时,按每度0.57元计算;每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.
(Ⅰ)设月用电
度时,应交电费
元,写出
关于
的函数关系式;
(Ⅱ)小明家第一季度缴纳电费情况如下:
月份 | 一月 | 二月 | 三月 | 合计 |
交费金额 | 76元 | 63元 | 45.6元 | 184.6元 |
问小明家第一季度共用电多少度?
科目:高中数学 来源: 题型:
【题目】(数学文卷·2017届江西省玉山一中高三上学期第二次月考第16题)中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数
可以是某个圆的“优美函数”;③正弦函数
可以同时是无数个圆的“优美函数”;④函数
是“优美函数”的充要条件为函数
的图象是中心对称图形.其中正确的命题是__(写出所有正确命题的序号)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校要用甲、乙、丙三辆校车把教职工从老校区接到校本部,已知从老校区到校本部有两条公路,校车走公路①时堵车的概率为
,校车走公路②时堵车的概率为p.若甲、乙两辆校车走公路①,丙校车由于其他原因走公路②,且三辆校车是否堵车相互之间没有影响.
(1)若三辆校车中恰有一辆校车被堵的概率为
,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆校车中被堵车辆的辆数ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在平面直角坐标系
中,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.已知曲线
的极坐标方程为
.倾斜角为
,且经过定点
的直线
与曲线
交于
两点.
(Ⅰ)写出直线
的参数方程的标准形式,并求曲线
的直角坐标方程;
(Ⅱ)求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是抛物线
与圆
在第一象限的公共点,其中圆心
,点
到
的焦点
的距离与
的半径相等,
上一动点到其准线与到点
的距离之和的最小值等于
的直径,
为坐标原点,则直线
被圆
所截得的弦长为( )
A. 2 B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体
中,
平面
,
平面
,且
是边长为4的等边三角形,
,
与平面
所成角的余弦值为
,
是线段
上一点.
![]()
(Ⅰ)若
是线段
的中点,证明:平面
平面
;
(Ⅱ)求二面角
的平面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市春节期间7家超市的广告费支出
(万元)和销售额
(万元)数据如下:
超市 | A | B | C | D | E | F | G |
广告费支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用线性回归模型拟合
与
的关系,求
关于
的线性回归方程;
(2)用二次函数回归模型拟合
与
的关系,可得回归方程:
,
经计算二次函数回归模型和线性回归模型的
分别约为
和
,请用
说明选择哪个回归模型更合适,并用此模型预测
超市广告费支出为3万元时的销售额.
参数数据及公式:
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率低于
,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com