【题目】已知集合A={x|x2﹣3x<0},B={x|(x+2)(4﹣x)≥0},C={x|a<x≤a+1}.
(1)求A∩B;
(2)若B∪C=B,求实数a的取值范围.
【答案】
(1)解:由题意:集合A={x|x2﹣3x<0}={x|0<x<3},B={x|(x+2)(4﹣x)≥0}={x|﹣2≤x≤4};
∴A∩B={x|0<x<3}
(2)解:集合C={x|a<x≤a+1}.
∵B∪C=B,
∴CB,
故需满足
,
解得:﹣2≤a≤3.
故实数a的取值范围为[﹣2,3]
【解析】(1)化简集合A,集合B,根据集合的基本运算即可求A∩B;(2)根据B∪C=B,建立条件关系即可求实数a的取值范围.
【考点精析】本题主要考查了集合的交集运算的相关知识点,需要掌握交集的性质:(1)A∩B
A,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,则A
B,反之也成立才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】对于函数
、
、
,如果存在实数
使得
,那么称
为
、
的生成函数.
(1) 下面给出两组函数,
是否分别为
、
的生成函数?并说明理由;
第一组:
,
, ![]()
第二组:
,
,
;
(2) 设
,
,
,生成函数
.若不等式
在
上有解,求实数
的取值范围;
(3) 设
,
,取
,生成函数
图像的最低点坐标为
.若对于任意正实数
,且
,试问是否存在最大的常数
,使
恒成立?如果存在,求出这个
的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=mx﹣1 , g(x)=﹣1+logmx(m>0,m≠1),有如下两个命题:
p:f(x)的定义域和g[f(x)]的值域相等.
q:g(x)的定义域和f[g(x)]的值域相等.
则( )
A.命题p,q都正确
B.命题p正确,命题q不正确
C.命题p,q都不正确
D.命题q不正确,命题p正确
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=﹣x2+(3﹣2m)x+2+m(0<m≤1).
(1)若x∈[0,m],证明:f(x)≤
;
(2)求|f(x)|在[﹣1,1]上的最大值g(m).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)设抛物线的顶点在坐标原点,焦点
在
轴正半轴上,过点
的直线交抛物线于
两点,线段
的长是
,
的中点到
轴的距离是
.
(1)求抛物线的标准方程;
(2)在抛物线上是否存在不与原点重合的点
,使得过点
的直线交抛物线于另一点
,满足
,且直线
与抛物线在点
处的切线垂直?并请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:
转速x(转/秒) | 8 | 10 | 12 | 14 | 16 |
每小时生产有缺点的零件数y(件) | 5 | 7 | 8 | 9 | 11 |
(1)如果y对x有线性相关关系,求回归方程;
(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多有10个,那么机器的运转速度应控制在设么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自驾游从
地到
地有甲乙两条线路,甲线路是
,乙线是
,其中
段、
段、
段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表1所示.经调查发现,堵车概率
在
上变化,
在
上变化.在不堵车的情况下.走线路甲需汽油费500元,走线路乙需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计
段平均堵车时间,调查了100名走甲线路的司机,得到表2数据.
CD段 | EF段 | GH段 | |||
堵车概率 |
|
|
| ||
平均堵车时间 (单位:小时) |
| 2 | 1 | ||
(表1) | |||||
堵车时间(单位:小时) | 频数 | ||||
| 8 | ||||
| 6 | ||||
| 38 | ||||
| 24 | ||||
| 24 | ||||
(表2) | |||||
(1)求
段平均堵车时间
的值.
(2)若只考虑所花汽油费期望值的大小,为了节约,求选择走甲线路的概率.
(3)在(2)的条件下,某4名司机中走甲线路的人数记为X,求X的数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一批土鸡蛋中,随机抽取n个得到一个样本,其重量(单位:克)的频数分布表如表:
分组(重量) | [80,85) | [85,90) | [90,95) | [95,100] |
频数(个) | 10 | 50 | m | 15 |
已知从n个土鸡蛋中随机抽取一个,抽到重量在在[90,95)的土鸡蛋的根底为 ![]()
(1)求出n,m的值及该样本的众数;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的土鸡蛋中共抽取5个,再从这5个土鸡蛋中任取2 个,其重量分别是g1 , g2 , 求|g1﹣g2|≥10概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com