【题目】已知函数
.
(1)讨论
在
上的零点个数;
(2)当
时,若存在
,使
,求实数
的取值范围.(
为自然对数的底数,其值为2.71828……)
【答案】(1)见解析;(2)![]()
【解析】
(1)构造函数
,先将讨论
在
上的零点个数问题,转化为讨论直线
与曲线
的交点个数问题,用导数方法研究函数
单调性,求出值域,即可得出结果;
(2)根据(1)的结果,由
求出零点,得到
,再由题意得到
成立,构造函数
,用导数方法研究其单调性,进而可求出结果.
(1)由
得
,令
,
因此讨论
在
上的零点个数,即是讨论直线
与曲线
的交点个数,
∵
,
在
上恒成立,
故
在
上单调递增,
,
又
连续不断,所以当
时,
在
上无零点;
当
时,
在
上存在一个零点.
(2)当
时,由(1)得
在
上存在一个零点,
由
得
,
由(1)可得
在
上单调递减,在
上单调递增;
所以
,
又存在
,使
成立,
所以,只需
成立,即
不等式成立,
令
,
则
,
易知
在
上恒成立,
故
在
上单调递增
又
,所以
.
故实数
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】某商场为改进服务质量,在进场购物的顾客中随机抽取了
人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:
满意 | 不满意 | |
男 |
|
|
女 |
|
|
是否有
的把握认为顾客购物体验的满意度与性别有关?
若在购物体验满意的问卷顾客中按照性别分层抽取了
人发放价值
元的购物券.若在获得了
元购物券的
人中随机抽取
人赠其纪念品,求获得纪念品的
人中仅有
人是女顾客的概率.
附表及公式:
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左,右焦点分别为
,
,
,M是椭圆E上的一个动点,且
的面积的最大值为
.
(1)求椭圆E的标准方程,
(2)若
,
,四边形ABCD内接于椭圆E,
,记直线AD,BC的斜率分别为
,
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】绿色已成为当今世界主题,绿色动力已成为时代的驱动力,绿色能源是未来新能源行业的主导.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如图所示的频率分布直方图.
![]()
(1)估计这100辆汽车的单次最大续航里程的平均值
(同一组中的数据用该组区间的中点值代表);
(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程
近似地服从正态分布
,经计算第(1)问中样本标准差
的近似值为50.用样本平均数
作为
的近似值,用样本标准差
作为
的估计值;
(ⅰ)现从该汽车公司最新研发的新能源汽车中任取一辆汽车,求它的单次最大续航里程恰好在200千米到350千米之间的概率;
(ⅱ)从该汽车公司最新研发的新能源汽车中随机抽取10辆,设这10辆汽车中单次最大续航里程恰好在200千米到350千米之间的数量为
,求
;
(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正、反面的概率都是
,方格图上标有第0格、第1格、第2格、…、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次,若掷出正面,遥控车向前移动一格(从
到
),若掷出反面,遥控车向前移动两格(从
到
),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移到第
格的概率为
,其中
,试说明
是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.
参考数据:若随机变量
服从正态分布
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
![]()
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的上顶点到左焦点
的距离为
.直线
与椭圆
交于不同两点
、
(
、
都在
轴上方),且
.
![]()
(1)求椭圆
的方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着科技的发展,网购已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在某市的普及情况,某调查机构进行了有关网购的调查,并从参与调查的市民中随机抽取了男、女各100人进行分析,得到如下所示的统计表.
经常网购 | 偶尔网购或不网购 | 合计 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合计 |
附:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为该市市民的网购情况与性别无关.
(2)①现从所抽取的100位女性市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从该市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为X,求随机变量X的数学期望和方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修
:不等式选讲
已知函数f(x)=|2x+3|+|2x﹣1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com