【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,过点
的直线
的参数方程为
(
为参数),直线
与曲线
相交于
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)若
,求
的值.
科目:高中数学 来源: 题型:
【题目】某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.
(Ⅰ)若小店一天购进16份,求当天的利润
(单位:元)关于当天需求量
(单位:份,
)的函数解析式;
(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)小店一天购进16份这种食品,
表示当天的利润(单位:元),求
的分布列及数学期望;
(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点
到定点
的距离比
到定直线
的距离小1.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)过点
任意作互相垂直的两条直线
,分别交曲线
于点
和
.设线段
,
的中点分别为
,求证:直线
恒过一个定点;
(Ⅲ)在(Ⅱ)的条件下,求
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
(
)的左、右焦点分别为
,
,过
作垂直于
轴的直线与椭圆
在第一象限交于点
,若
,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知点
关于
轴的对称点
在抛物线
上,是否存在直线
与椭圆交于
,使得
的中点
落在直线
上,并且与抛物线
相切,若直线
存在,求出
的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在Rt
中,
,点
、
分别在线段
、
上,且
,将
沿
折起到
的位置,使得二面角
的大小为
.
(1)求证:
;
(2)当点
为线段
的靠近
点的三等分点时,求
与平面
所成角
的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长是短轴长的
倍,且过点
.
![]()
(1)求椭圆的标准方程;
(2)若
的顶点
、
在椭圆上,
所在的直线斜率为
,
所在的直线斜率为
,若
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,点
是圆
上任意一点,线段
的垂直平分线与半径
交于
点,当点
在圆
上运动时,
(1)求点
的轨迹
的方程;
(2)过
作直线
与曲线
相交于
两点,
为坐标原点,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com