【题目】已知函数
,
.
(1)若
存在极大值
,证明:
;
(2)若关于
的不等式
在区间
上恒成立,求
的取值范围.
【答案】(1)证明见解析;(2)
.
【解析】
(1)
.(x∈(0,+∞)).对a分类讨论,即可得出单调性极值.进而证明结论.
(2)令h(x)=f(x)+ex-1-1=lnx-ax+a+ex-1-1,x∈[1,+∞),h(1)=0.
,
,对a分类讨论,利用导数研究函数的单调性、极值与最值即可得出.
(1)![]()
当
时,
,
单调递增,不存在极大值,
所以
,
在
上单调递增,在
上单调递减,
的极大值为
.
设
,
,
在
上单调递减,在
上单调递增,
.
所以
的极大值大于等于0.
(2)设
,
,
,
所以
单调递增,
由
知
在
上单调递减,在
上单调递增,
,
,
若
,则
,
在
恒成立,
此时,函数
在
上单调递增,
,满足条件.
若
,则
,所以存在
使得
,
即在
内,有
,
在
上单调递减,
不满足条件.
综上,
.
科目:高中数学 来源: 题型:
【题目】现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知倾斜角为
的直线
过点
,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.曲线
的极坐标方程为
,直线
与曲线
分别交于
、
两点.
(1)写出直线
的参数方程和曲线
的直角坐标方程;
(2)若
,求直线
的斜率
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C:
=1(a>0,b>0)的左右焦点为F1,F2过点F1的直线l与双曲线C的左支交于AB两点,△BF1F2的面积是△AF1F2面积的三倍,∠F1AF2=90°,则双曲线C的离心率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科站技术员为了解某品种树苗的生长情况,在该批树苗中随机抽取一个容量为100的样本,测量树苗高度(单位:
).经统计,高度在区间
内,将其按
,
,
,
,
,
分成6组,制成如图所示的频率分布直方图,其中高度不低于
的树苗为优质树苗.
![]()
附:
,其中![]()
|
|
|
|
|
|
|
|
|
|
(1)求频率分布直方图中
的值;
(2)已知所抽取的这100棵树苗来自于甲、乙两个地区,部分数据如下
列联表所示,将列联表补充完整,并根据列联表判断是否有
%的把握认为优质树苗与地区有关?
甲地区 | 乙地区 | 合计 | |
优质树苗 | 5 | ||
非优质树苗 | 25 | ||
合计 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为
元时,生产
件产品的销售收入是
(元),
为每天生产
件产品的平均利润(平均利润=总利润/总产量).销售商从工厂每件
元进货后又以每件
元销售,
,其中
为最高限价
,
为销售乐观系数,据市场调查,
是由当
是
,
的比例中项时来确定.
(1)每天生产量
为多少时,平均利润
取得最大值?并求
的最大值;
(2)求乐观系数
的值;
(3)若
,当厂家平均利润最大时,求
与
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,下述四个结论:
①
是偶函数;
②
的最小正周期为
;
③
的最小值为0;
④
在
上有3个零点
其中所有正确结论的编号是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为
,点A的坐标为
,且
.
(I)求椭圆的方程;
(II)设直线l:
与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若
(O为原点) ,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com