【题目】若项数为
的单调增数列
满足:①
;②对任意
,存在![]()
使得
;则称数列
具有性质
.
(1)分别判断数列1,3,4,7和1,2,3,5是否具有性质
,并说明理由;
(2)若数列
具有性质
,且
.
(i)证明数列
的项数
;
(ii)求数列
中所有项的和的最小值.
【答案】(1)数列1,3,4,7不具备性质P,数列1,2,3,5具有性质
;(2)(i)证明见解析,(ii)75
【解析】
(1)根据定义验证即可得解;
(2)(i)根据数列关系分析
,结合
,即可得到
,即可得证;
(ii)构造数列:1,2,4,5,9,18,36,或1,2,3,6,9,18,36,再证明75是最小值.
(1)因为
,数列1,3,4,7不具备性质P,
,所以数列1,2,3,5具有性质
;
(2)(i)证明:数列
单调递增,具有性质
,且
,
,
所以
,即
,所以
,
,
所以
,![]()
所以
;
(ii)构造数列:1,2,4,5,9,18,36,或1,2,3,6,9,18,36,显然这两个数列满足性质
,
且数列之和均为75,下面说明75为数列中所有项的和的最小值,
若18在数列中,要求数列中的所有项的和最小,则
,
若18不在数列中,
,由(i)可知
,
数列所有项之和
,
所以要使所有项之和最小,必有
,
同理可得要使数列中所有项的和最小,必有
,
,
同理可得:
或5,
依次类推,要使数列中的所有项的和最小,该数列为1,2,4,5,9,18,36,或1,2,3,6,9,18,36,
综上所述:数列
中所有项的和的最小值为75.
科目:高中数学 来源: 题型:
【题目】已知圆
:
的圆心为
,圆
:
的圆心为
,一动圆与圆
内切,与圆
外切.
(1)求动圆圆心
的轨迹方程;
(2)过点
的直线
与曲线
交于
,
两点,点
是直线
上任意点,直线
,
,
的斜率分别为
,
,
,试探求
,
,
的关系,并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的左焦点为
,点
在椭圆
上.
![]()
(1)求椭圆
的方程;
(2)已知圆
,连接
并延长交圆
于点
为椭圆长轴上一点(异于左、右焦点),过点
作椭圆长轴的垂线分别交椭圆
和圆
于点
(
均在
轴上方).连接
,记
的斜率为
,
的斜率为
.
①求
的值;
②求证:直线
的交点在定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某区“创文明城区”
简称“创城”
活动中,教委对本区A,B,C,D四所高中校按各校人数分层抽样调查,将调查情况进行整理后制成如表:
学校 | A | B | C | D |
抽查人数 | 50 | 15 | 10 | 25 |
“创城”活动中参与的人数 | 40 | 10 | 9 | 15 |
注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值![]()
假设每名高中学生是否参与“创城”活动是相互独立的.
Ⅰ
若该区共2000名高中学生,估计A学校参与“创城”活动的人数;
Ⅱ
在随机抽查的100名高中学生中,从A,C两学校抽出的高中学生中各随机抽取1名学生,求恰有1人参与“创城”活动的概率;
Ⅲ
若将表中的参与率视为概率,从A学校高中学生中随机抽取3人,求这3人参与“创城”活动人数的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市从
年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取
个,并按
、
、
、
、
分组,得到频率分布直方图如图,假设甲、乙两种酸奶独立销售且日销售量相互独立.
![]()
(1)写出频率分布直方图甲中的
的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为
、
,试比较
与
的大小;(只需写出结论)
(2)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于
箱且另一个不高于
箱的概率;
(3)设
表示在未来
天内甲种酸奶的日销售量不高于
箱的天数,以日留住量落入各组的频率为概率,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,双曲线
的右顶点为A,右焦点为F,点B在双曲线的右支上,矩形OFBD与矩形AEGF相似,且矩形OFBD与矩形AEGF的面积之比为2:1,则该双曲线的离心率为
![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
〔
>b>0〕与抛物线
有共同的焦点F,且两曲线在第一象限的交点为M,满足
.
(1)求椭圆的方程;
(2)过点
,斜率为
的直线
与椭圆交于
两点,设
,假设
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com