精英家教网 > 高中数学 > 题目详情
过双曲线C:x2-
y2
m2
=1
的右顶点A作两条斜率分别为k1、k2的直线AM、AN交双曲线C于M、N两点,其k1、k2满足关系式k1•k2=-m2且k1+k2≠0,k1>k2
(1)求直线MN的斜率;
(2)当m2=2+
3
时,若∠MAN=60°,求直线MA、NA的方程.
(1)C:x2-
y2
m2
=1
的右顶点A坐标为(1,0)
设MA直线方程为y=k1(x-1),代入m2x2-y2-m2=0中,整理得(m2-k1)x2+2k12x-(k12+m2)=0)
由韦达定理可知xmxA=
k21
+m2
k21
-m2
,而xA=1,又k1k2=-m2
xm=
k21
+m2
k21
-m2
=
k21
-k1k2
k21
+k1k2
=
k1-k2
k1+k2

于是ym=k1(xm-1)=k1(
k1-k2
k1+k2
-1)=
-2k1k2
k1+k2

由同理可知yn=
-2k1k2
k1+k2
,于是有ym=yn
∴MNx抽,从而MN直线率kMN=0.
(2)∵∠MAN=60°,说明AM到AN的角为60°或AN到AM的角为60°.
k2-k1
1+k1k2
=
3
k1-k2
1+k1k2
=
3

k1k2=-(3+
3
)
,k1>k2
从而
k2-k1=-3-
3
k1k2=-(2+
3
)

则求得
k1=1
k2=-(2+
3
)
k1=2+
3
k2=-1

因此MA,NA的直线的方程为y=x-1,y=-(2+
3
)(x-1)

或为y=(2+
3
)(x-1)
,y=-(x-1).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:x2-y2=1的渐近线方程为
x±y=0
x±y=0
;若双曲线C的右顶点为A,过A的直线l与双曲线C的两条渐近线交于P,Q两点,且
PA
=2
AQ
,则直线l的斜率为
±3
±3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是______.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省巢湖市高三(上)质量检测数学试卷(理科)(解析版) 题型:填空题

给出下列命题:
①已知椭圆的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是    .(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2011年广东省广州市高考数学二模试卷(理科)(解析版) 题型:解答题

已知双曲线C:和圆O:x2+y2=b2(其中原点O为圆心),过双曲线C上一点P(x,y)引圆O的两条切线,切点分别为A、B.
(1)若双曲线C上存在点P,使得∠APB=90°,求双曲线离心率e的取值范围;
(2)求直线AB的方程;
(3)求三角形OAB面积的最大值.

查看答案和解析>>

同步练习册答案