10£®ÒÑÖªÍÖÔ²C£º$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÉÏ¡¢Ï½¹µã·Ö±ðΪF1£¬F2£¬ÉϽ¹µãF1µ½Ö±Ïß 4x+3y+12=0µÄ¾àÀëΪ3£¬ÍÖÔ²CµÄÀëÐÄÂÊe=$\frac{1}{2}$£®
£¨I£©ÈôPÊÇÍÖÔ²CÉÏÈÎÒâÒ»µã£¬Çó|${\overrightarrow{P{F_1}}}$||${\overrightarrow{P{F_2}}}$|µÄȡֵ·¶Î§£»
£¨II£©Éè¹ýÍÖÔ²CµÄÉ϶¥µãAµÄÖ±ÏßlÓëÍÖÔ²½»ÓÚµãB£¨B²»ÔÚyÖáÉÏ£©£¬´¹Ö±ÓÚlµÄÖ±ÏßÓël½»ÓÚµãM£¬ÓëxÖá½»ÓÚµãH£¬Èô$\overrightarrow{{F_1}B}•\overrightarrow{{F_1}H}$=0£¬ÇÒ|${\overrightarrow{MO}}$|=|${\overrightarrow{MA}}$|£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨¢ñ£©ÉèÍÖÔ²ÉϽ¹µãF1£¨0£¬c£©£¬ÓÉF1µ½Ö±Ïß4x+3y+12=0µÄ¾àÀëΪ3£¬½áºÏÍÖÔ²CµÄÀëÐÄÂÊ$e=\frac{1}{2}$£¬Çó³öÍÖÔ²C·½³Ì£¬ÍƳö1¡Ü|PF1|¡Ü3£¬Éè$|{\overrightarrow{P{F_1}}}|=t£¬|{{{\overrightarrow{PF}}_2}}|=4-t$£¬$|{\overrightarrow{P{F_1}}}|•|{{{\overrightarrow{PF}}_2}}|=t£¨4-t£©$=-£¨t-2£©2+4£¬t=2ʱ£¬È»ºóÇó½â$|{\overrightarrow{P{F_1}}}|•|{{{\overrightarrow{PF}}_2}}|$ȡֵ·¶Î§£®
£¨¢ò£©ÉèÖ±ÏßlµÄбÂÊΪk£¬Ö±ÏßlµÄ·½³Ìy-2=kx£¬ÉèB£¨xB£¬yB£©£¬A£¨xA£¬yA£©£¬ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬Çó³öA£¬B×ø±ê£¬ÀûÓÃ$\overrightarrow{{F_1}B}•\overrightarrow{{F_1}H}=0$£¬Çó³öH¡¢MµÄ×ø±ê£¬ÍƳök¼´¿ÉÇó³öÖ±ÏßlµÄ·½³Ì£®

½â´ð £¨±¾Ð¡ÌâÂú·Ö13·Ö£©
½â£º£¨¢ñ£©ÓÉÒÑÖªÍÖÔ²C·½³ÌΪ$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1£¨a£¾b£¾0£©$£¬
ÉèÍÖÔ²ÉϽ¹µãF1£¨0£¬c£©£¬ÓÉF1µ½Ö±Ïß4x+3y+12=0µÄ¾àÀëΪ3£¬
µÃ$\frac{{|{3c+12}|}}{5}=3$£¬ÓÖÍÖÔ²CµÄÀëÐÄÂÊ$e=\frac{1}{2}$£¬ËùÒÔ$\frac{c}{a}=\frac{1}{2}$£¬ÓÖa2=b2+c2£¬
ÇóµÃa2=4?b2=3£®ÍÖÔ²C·½³ÌΪ$\frac{y^2}{4}+\frac{x^2}{3}=1$£¬
ËùÒÔ1¡Ü|PF1|¡Ü3£¬Éè$|{\overrightarrow{P{F_1}}}|=t£¬|{{{\overrightarrow{PF}}_2}}|=4-t$£¬$|{\overrightarrow{P{F_1}}}|•|{{{\overrightarrow{PF}}_2}}|=t£¨4-t£©$=-£¨t-2£©2+4£¬t=2ʱ£¬
$|{\overrightarrow{P{F_1}}}|•|{{{\overrightarrow{PF}}_2}}|$×î´óֵΪ4£¬t=1»ò3ʱ£¬$|{\overrightarrow{P{F_1}}}|•|{{{\overrightarrow{PF}}_2}}|$×îСֵΪ3£¬
$|{\overrightarrow{P{F_1}}}|•|{\overrightarrow{P{F_2}}}|$ȡֵ·¶Î§ÊÇ[3£¬4]£®¡­£¨5·Ö£©
£¨¢ò£©ÉèÖ±ÏßlµÄбÂÊΪk£¬
ÔòÖ±Ïßl·½³Ìy-2=kx£¬ÉèB£¨xB£¬yB£©£¬A£¨xA£¬yA£©£¬
ÓÉ$\left\{\begin{array}{l}y=kx+2\\ \frac{y^2}{4}+\frac{x^2}{3}=1\end{array}\right.$£¬µÃ£¨3k2+4£©x2+12kx=0£¬
ÔòÓÐxA=0£¬${x_B}=\frac{-12k}{{3{k^2}+4}}$£¬ËùÒÔ${y_B}=\frac{{-6{k^2}+8}}{{3{k^2}+4}}$£¬
ËùÒÔ$\overrightarrow{{F_1}B}=£¨\frac{-12k}{{3{k^2}+4}}£¬\frac{{8-6{k^2}}}{{3{k^2}+4}}-1£©$£¬$\overrightarrow{{F_1}H}=£¨{x_H}£¬-1£©$£¬
ÓÉÒÑÖª$\overrightarrow{{F_1}B}•\overrightarrow{{F_1}H}=0$£¬
ËùÒÔ$\frac{-12k}{{3{k^2}+4}}•{x_H}$$+1-\frac{{-6{k^2}+8}}{{3{k^2}+4}}=0$£¬½âµÃ${x_H}=\frac{{9{k^2}-4}}{12k}$£¬$|{\overrightarrow{MO}}|=|{\overrightarrow{MA}}|$£¬
$x_M^2+y_M^2=x_M^2+{£¨{y_M}-2£©^2}$£¬yM=1£¬MHµÄ·½³Ì$y=-\frac{1}{k}£¨x-\frac{{9{k^2}-4}}{12k}£©$£¬ÁªÁ¢$\left\{\begin{array}{l}y=kx+2\\ y=-\frac{1}{k}£¨x-\frac{{9{k^2}-4}}{12k}£©\end{array}\right.$£¬
${y_M}=\frac{{9{k^2}+20}}{{12£¨1+{k^2}£©}}=1$£¬½âµÃ${k^2}=\frac{8}{3}$£¬
ËùÒÔÖ±ÏßlµÄ·½³ÌΪ$y=¡À\frac{{2\sqrt{6}}}{3}x+2$£®¡­£¨13·Ö£©

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÓ¦Óã¬ÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èç¹ûÏòÁ¿$\overrightarrow a=£¨n£¬1£©$Óë$\overrightarrow b=£¨4£¬n£©$¹²Ïߣ¬ÇÒ·½ÏòÏà·´£¬ÔònµÄֵΪ£¨¡¡¡¡£©
A£®¡À2B£®-2C£®2D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÉèÍÖÔ²$\frac{{x}^{2}}{10}$+y2=1ºÍË«ÇúÏß$\frac{{x}^{2}}{8}$-y2=1µÄ¹«¹²½¹µã·Ö±ðΪF1£¬F2£¬PÊÇÕâÁ½ÇúÏߵĽ»µã£¬Ôò¡÷PF1F2µÄÍâ½ÓÔ²°ë¾¶Îª£¨¡¡¡¡£©
A£®1B£®2C£®2$\sqrt{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬Âú×ãf£¨-$\frac{3}{2}$+x£©=f£¨$\frac{3}{2}$+x£©£¬µ±x¡Ê[0£¬$\frac{3}{2}$]ʱ£¬f£¨x£©=ln£¨x2-x+1£©£¬Ôòº¯Êýf£¨x£©ÔÚÇø¼ä[0£¬6]ÉϵÄÁãµã¸öÊýÊÇ£¨¡¡¡¡£©
A£®3B£®5C£®7D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¼ÙÉèÄãºÍͬ×ÀÍæÊý×ÖÓÎÏ·£¬Á½È˸÷×ÔÔÚÐÄÖÐÏëÒ»¸öÕûÊý£¬·Ö±ð¼ÇΪx£¬y£¬ÇÒx£¬y¡Ê[1£¬4]£®Èç¹ûÂú×ã|x-y|¡Ü1£¬ÄÇô¾Í³ÆÄãºÍͬ×À¡°ÐÄÁé¸ÐÓ¦¡±£¬ÔòÄãºÍͬ×À¡°ÐÄÁé¸ÐÓ¦¡±µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{7}{16}$B£®$\frac{5}{8}$C£®$\frac{9}{16}$D£®$\frac{7}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄa1=-20£¬¹«²îΪd£¬Ç°nÏîºÍΪSn£¬Ôò¡°3£¼d£¼5¡±ÊÇ¡°SnµÄ×îСֵ½öΪS6¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÈýÀâÖùABC-A1B1ClÖУ¬M£¬N·Ö±ðΪCC1£¬A1B1µÄÖе㣮CA¡ÍCB1£¬CA=CB1£¬BA=BC=BB1£®
£¨¢ñ£©ÇóÖ¤£ºÖ±ÏßMN¡ÎÆ½ÃæCAB1£»
£¨¢ò£©ÇóÖ¤£ºÖ±ÏßBA1¡ÍÆ½ÃæCAB1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðΪA1¡¢A2£¬ÉÏ¡¢Ï¶¥µã·Ö±ðΪB2¡¢B1£¬ËıßÐÎA1B1A2B2µÄÃæ»ýΪ4$\sqrt{3}$£¬ÇÒ¸ÃËıßÐÎÄÚÇÐÔ²µÄ·½³ÌΪx2+y2=$\frac{12}{7}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Ö±Ïßl£ºy=kx+m£¨k£¬m¾ùΪ³£Êý£©ÓëÍÖÔ²CÏཻÓÚM£¬NÁ½¸ö²»Í¬µÄµã£¨M£¬NÒìÓÚA1£¬A2£©£¬ÈôÒÔMNΪֱ¾¶µÄÔ²¹ýÍÖÔ²CµÄÓÒ¶¥µãA2£¬ÊÔÅжÏÖ±ÏßlÄÜ·ñ¹ý¶¨µã£¿ÈôÄÜ£¬Çó³ö¸Ã¶¨µã×ø±ê£»Èô²»ÄÜ£¬Ò²Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðÊÇa£¬b£¬c£®ÒÑÖª2a=b+c£¬sin2A=sinBsinC£®ÊÔÅжÏÈý½ÇÐεÄÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸