精英家教网 > 高中数学 > 题目详情

【题目】已知 ,(本题不作图不得分)

(1)求 的最大值和最小值;

(2)求 的取值范围.

【答案】(1)最大值为12,最小值3; (2).

【解析】

(1)由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论;(2)的几何意义表示区域内的点与连接直线的斜率,可得与连接的直线斜率最小,与连接的直线斜率最大,从而可得结果.

(1)由已知得到平面区域:z=2x+y变形为y=-2x+z,

当此直线经过图中A时使得直线在y轴的截距最小,z最小,

经过图中B时在y轴的截距最大,z 最大,A(1,1),B(5,2),

所以z=2x+y的最大值为2×5+2=12,最小值2×1+1=3;

(2)的几何意义表示区域内的点与(-1,-1)连接直线的斜率,

所以与B连接的直线斜率最小,与C连接的直线斜率最大,

所以的最小值为,最大值为

所以 的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其图像相邻的两个对称中心之间的距离为,且有一条对称轴为直线,则下列判断正确的是 ( )

A. 函数的最小正周期为

B. 函数的图象关于直线对称

C. 函数在区间上单调递增

D. 函数的图像关于点对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级有500名学生,为了了解数学学科的学习情况,现随机抽出若干名学生在一次测试中的数学成绩(满分150分),制成如下频率分布表:

分组

频数

频率

0.050

0.200

12

0.300

0.275

4

0.050

合计

(1)①②③④处应分别填什么?

(2)根据频率分布表完成频率分布直方图.

(3)试估计该校高三年级在这次测试中数学成绩的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A24

1)设圆Nx轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

2)设平行于OA的直线l与圆M相交于BC两点,且BC=OA,求直线l的方程;

3)设点Tt,o)满足:存在圆M上的两点PQ,使得,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2=8内有一点P0-12),AB为过点P0且倾斜角为α的弦.

1)当α=时,求AB的长;

2)当弦AB被点P0平分时,写出直线AB的方程(用直线方程的一般式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线恒过定点,圆经过点和定点,且圆心在直线上.

(1)求圆的方程;

(2)已知点为圆直径的一个端点,若另一端点为点,问轴上是否存在一点,使得为直角三角形,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点为圆心的圆过点,线段的垂直平分线交圆于点,且.

1)求直线的方程;

2)求圆的方程;

3)是否存在点在圆上,使得的面积为?若存在,请指出共有几个这样的点?说明理由,并求出这些点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的命题的是(

A.已知随机变量服从二项分布,若,则

B.将一组数据中的每个数据都加上同一个常数后,方差恒不变;

C.设随机变量服从正态分布,若,则

D.某人在10次射击中,击中目标的次数为,则当时概率最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是奇函数,求的值;

2)若,且对任意的实数都成立,求的取值范围;

3)对于任意的,总有,求的取值范围.

查看答案和解析>>

同步练习册答案