精英家教网 > 高中数学 > 题目详情
(2013•淄博二模)已知x,y满足条件
x≥0
y≤x
2x+y+k≤0
(k为常数),若目标函数z=x+3y的最大值为8,则k=(  )
分析:由目标函数z=x+3y的最大值为8,我们可以画出满足条件 
x≥0
y≤x
2x+y+k≤0
(k为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数k的方程组,消参后即可得到k的取值.
解答:解:画出x,y满足的
x≥0
y≤x
2x+y+k≤0
(k为常数)可行域如下图:
由于目标函数z=x+3y的最大值为8,
可得直线y=x与直线8=x+3y的交点A(2,2),
使目标函数z=x+3y取得最大值,
将x=2,y=2代入2x+y+k=0得:k=-6.
故选B.
点评:如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•淄博二模)在如图所示的几何体中,△ABC是边长为2的正三角形,AE=1,AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,且BD⊥CD.
(Ⅰ)AE∥平面BCD;
(Ⅱ)平面BDE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)已知P(x,y)为函数y=1+lnx图象上一点,O为坐标原点,记直线OP的斜率k=f(x).
(Ⅰ)若函数f(x)在区间(m,m+
1
3
)
(m>0)上存在极值,求实数m的取值范围;
(Ⅱ)当 x≥1时,不等式f(x)≥
t
x+1
恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)如图,平行四边形ABCD中,AB=2,AD=1,∠A=60°,点M在AB边上,且AM=
1
3
AB,则
DM
DB
•等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)等比数列{cn}满足cn+1+cn=10•4n-1(n∈N*),数列{an}的前n项和为Sn,且an=log2cn
(I)求an,Sn
(II)数列{bn}满足bn=
14Sn-1
Tn为数列{bn}
的前n项和,是否存在正整数m,k(1<m<k),使得T1,Tm,Tk成等比数列?若存在,求出所有m,k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)集合A={-1,0,1},B={y|y=ex,x∈A},则A∩B=(  )

查看答案和解析>>

同步练习册答案