【题目】下列说法中不正确的序号为_______.
①若函数
在
上单调递减,则实数
的取值范围是
;
②函数
是偶函数,但不是奇函数;
③已知函数
的定义域为
,则函数
的定义域是
;
④若函数
在
上有最小值-4,(
,
为非零常数),则函数
在
上有最大值6.
科目:高中数学 来源: 题型:
【题目】我们为了探究函数
的部分性质,先列表如下:
| … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.004 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
![]()
观察表中
值随
值变化的特点,完成以下的问题.
首先比较容易看得出来:此函数在区间
上是递减的;
(1)函数
在区间 上递增
当
时,
= .
(2)请你根据上面性质作出此函数的大概图像;
(3)试用函数单调性的定义证明:函数
在区间
上为减函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义域为R的偶函数,当
时,f(x)=x2-2x
![]()
(1)求出函数f(x)在R上的解析式;
(2)画出函数f(x)的图象,并根据图象写出f(x)的单调区间.
(3)求使f(x)=1时的x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1 , 直线C2的极坐标方程分别为ρ=4sinθ,ρcos(
)=2
.
(1)求C1与C2交点的极坐标;
(2)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为
(t∈R为参数),求a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体
中,底面
为正方形,四边形
是矩形,平面
平面
.
![]()
(1)求证:平面
平面
;
(2)若过直线
的一个平面与线段
和
分别相交于点
和
(点
与点
均不重合),求证:
;
(3)判断线段
上是否存在一点
,使得平面
平面
?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点为
,离心率为
.点
为圆
上任意一点,
为坐标原点.
(1)求椭圆
的标准方程;
(2)设直线
经过点
且与椭圆
相切,
与圆
相交于另一点
,点
关于原点
的对称点为
,证明:直线
与椭圆
相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+(b﹣1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且对任意x∈R,都有f(2﹣x)=f(2+x),求f(x)的解析式;
(2)已知x1 , x2为函数f(x)的两个零点,且x2﹣x1=2,当x∈(x1 , x2)时,g(x)=﹣f(x)+2(x2﹣x)的最大值为,当a≥2时,求h(a)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
的面积为
,且与
轴、
轴分别交于
两点.
(1)求圆
的方程;
(2)若直线
与线段
相交,求实数
的取值范围;
(3)试讨论直线
与(1)小题所求圆
的交点个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com