精英家教网 > 高中数学 > 题目详情
已知F1、F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦点,点P是双曲线C上的动点,若PF1=2PF2,∠F1PF2=60°,则双曲线C的离心率为
3
3
分析:根据题设条件,利用余弦定理能够求出|PF|=
2
3
3
c,再由双曲线定义可以推导出c=
3
a,从而求出该双曲线的离心率.
解答:解:设|PF1|=2x,|PF2|=x,|F1F2|=2c,
∵∠F1PF2=60°,
∴cos60°=
(2x)2+x2-(2c)2
2•2x•x
=
1
2
⇒x=
2
3
3
c;
∴|PF1|=2×
2
3
3
c;|PF2|=
2
3
3
c;
∵|PF1|-|PF2|=2a
∴c=
3
a.
∴e=
3

故答案为:
3
点评:本题主要考察栓曲线的基本性质,借助余弦定理解决圆锥曲线问题是解决高考试题的一种常规方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2分别为双曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,P为双曲线左支上任一点,若
|PF2|2
|PF1|
的最小值为8a,则双曲线的离心率e的取值范围是(  )
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是双曲
x2
9
-
y2
16
=1
的左、右两个焦点,点P是双曲线上一点,且|PF1|.|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知F1、F2是双曲数学公式的左、右两个焦点,点P是双曲线上一点,且|PF1|.|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源:2013年陕西省西安市西工大附中高考数学一模试卷(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市西工大附中高考数学四模试卷(理科)(解析版) 题型:选择题

已知F1,F2分别为双曲的左、右焦点,P为双曲线左支上任一点,若的最小值为8a,则双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(0,3]
C.(1,3]
D.(0,2]

查看答案和解析>>

同步练习册答案