【题目】选修4 — 4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),以原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
(
).
(1)分别写出直线
的普通方程与曲线
的直角坐标方程;
(2)已知点
,直线
与曲线
相交于
两点,若
,求
的值.
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的
,
,
,
四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是
或
作品获得一等奖”;
乙说:“
作品获得一等奖”;
丙说:“
,
两项作品未获得一等奖”;
丁说:“是
作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒子中装有四张大小形状均相同的卡片,卡片上分别标有数
其中
是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响).
(1)求事件
“在一次试验中,得到的数为虚数”的概率
与事件
“在四次试验中,
至少有两次得到虚数” 的概率
;
(2)在两次试验中,记两次得到的数分别为
,求随机变量
的分布列与数学期望![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当生物死亡后,它机体内原有的碳14会按确定的规律衰减.按照惯例,人们将每克组织的碳14含量作为一个单位大约每经过5730年,一个单位的碳14衰减为原来的一半,这个时间称为“半衰期”.当死亡生物组织内的碳14的含量不足死亡前的千分之一时,用一般的放射性探测器就测不到碳14了.如果用一般的放射性探测器不能测到碳14,那么死亡生物组织内的碳14至少经过了_____个“半衰期”.(提示:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的最大值为3,其图象相邻两条对称轴之间的距离为
.
![]()
(Ⅰ)求函数
的解析式和当
时
的单调减区间;
(Ⅱ)
的图象向右平行移动
个长度单位,再向下平移1个长度单位,得到
的图象,用“五点法”作出
在
内的大致图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体
的棱长为
,
分别是
的中点,点
在棱![]()
上,
(
).
![]()
(Ⅰ)三棱锥
的体积分别为
,当
为何值时,
最大?最大值为多少?
(Ⅱ)若
平面
,证明:平面
平面
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点,焦点在
轴上,短轴长和焦距都等于2,
是椭圆上的一点,且
在第一象限内,过
且斜率等于
的直线与椭圆
交于另一点
,点
关于原点的对称点为
.
![]()
(Ⅰ)证明:直线
的斜率为定值;
(Ⅱ)求
面积的最大值,并求此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】研究变量
,
得到一组样本数据,进行回归分析,有以下结论
①残差平方和越小的模型,拟合的效果越好;
②用相关指数
来刻画回归效果,
越小说明拟合效果越好;
③线性回归方程对应的直线
至少经过其样本数据点中的一个点;
④若变量
和
之间的相关系数为
,则变量
和
之间的负相关很强.
以上正确说法的个数是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com