【题目】经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80﹣2t(件),价格近似满足于
(元).
(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(2)求该种商品的日销售额y的最大值与最小值.
【答案】
(1)解:由已知,由价格乘以销售量可得:
![]()
(2)解:由(1)知①当0≤t≤10时y=﹣t2+10t+1200=﹣(t﹣5)2+1225
函数图象开口向下,对称轴为t=5,该函数在t∈[0,5]递增,在t∈(5,10]递减
∴ymax=1225(当t=5时取得),ymin=1200(当t=0或10时取得)
②当10<t≤20时y=t2﹣90t+2000=(t﹣45)2﹣25
图象开口向上,对称轴为t=45,该函数在t∈(10,20]递减,t=10时,y=1200,ymin=600(当t=20时取得)
由①②知ymax=1225(当t=5时取得),ymin=600(当t=20时取得)
【解析】(1)由已知,由价格乘以销售量可得该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)由(Ⅰ)分段求出函数的最大值与最小值,从而可得该种商品的日销售额y的最大值与最小值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:![]()
的一个焦点与抛物线
的焦点重合,点
在
上
(Ⅰ)求
的方程;
(Ⅱ)直线
不过原点O且不平行于坐标轴,
与
有两个交点
,线段
的中点为
,证明:
的斜率与直线
的斜率的乘积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
,顶点
在底面
上的射影恰为点
,且
.
![]()
(1)求棱
与
所成的角的大小;
(2)在棱
上确定一点
,使
,并求出二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+
(x≠0).
(1)判断并证明函数在其定义域上的奇偶性;
(2)判断并证明函数在(2,+∞)上的单调性;
(3)解不等式f(2x2+5x+8)+f(x﹣3﹣x2)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是
.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:
(
是参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,将直线
的参数方程化为普通方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,且
,试求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口船舶停靠的方案是先到先停.
(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.
(2)根据以往经验,甲船将于早上
到达,乙船将于早上
到达,请应用随机模拟的方法求甲船先停靠的概率,随机数模拟实验数据参考如下:记
,
都是
之间的均匀随机数,用计算机做了100次试验,得到的结果有12次满足
,有6次满足
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左右焦点分别为的
、
,离心率为
;过抛物线
焦点
的直线交抛物线于
、
两点,当
时,
点在
轴上的射影为
。连结
并延长分别交
于
、
两点,连接
;
与
的面积分别记为
,
,设
.
(Ⅰ)求椭圆
和抛物线
的方程;
(Ⅱ)求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(I)求函数
的对称轴方程;
(II)将函数
的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移
个单位,得到函数
的图象.若
分别是△ABC三个内角A,B,C的对边,a=2,c=4,且
,求b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com