精英家教网 > 高中数学 > 题目详情

【题目】设函数

1)当时,求不等式的解集

2)若函数,且有解,求的取值范围.

【答案】1;(2.

【解析】

1)当时,不等式化为|x+2|x2,去绝对值,解不等式即可;

2)求出gx)的最小值,使得所以gxmin≤11即可.

1)当a=2时,不等式化为|x+2|x2

所以-x2x+2x2,所以x2x-1

所以不等式的解集为:{x|x2x-1}

2)方法一:gx=f2x+f1-x

=|2x+a|+|x-a+1|=|x+|+|x+|+|x-a+1|

≥|+a+1|=|+1|

因为gx)≤11(a0)有解,所以gxmin≤11,即

所以3a≤20,所以0a

所以a的取值范围为(0]

方法二:

x=时,

因为gx)≤11(a0)有解,所以gxmin≤11,即

所以3a≤20,所以0a

所以a的取值范围为(0]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下图是国家统计局今年411日发布的20183月到20193月全国居民消费价格的涨跌幅情况折线图.(注:20192月与20182月相比较称同比,20192月与20191月相比较称环比),根据该折线图,下列结论错误的是

A. 20183月至20193月全国居民消费价格同比均上涨

B. 20183月至20193月全国居民消费价格环比有涨有跌

C. 20193月全国居民消费价格同比涨幅最大

D. 20193月全国居民消费价格环比变化最快

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面是矩形,交于点.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是双曲线的右焦点,左支上一点,),当周长最小时,则点的纵坐标为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分14本题共有2个小题,第1小题满分6分,第2小题满分8

沙漏是古代的一种时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细通过连接管道全部到下部容器所需要的时间称为该沙漏的一个沙时。如图,某沙漏由上下两个圆锥组成圆锥的底面直径和高均为8cm细沙全部在上部时高度为圆锥高度的细管长忽略不

1如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒精确1秒

2全部漏入下部恰好堆成一盖沙漏底的圆锥形沙求此锥形高度精确0.1cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的周期函数,周期,对都有,且当时,,若在区间内关于的方程恰有3个不同的实根,则的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:四棱锥P-ABCD底面为一直角梯形,AB⊥AD,CD⊥AD,CD=2AB,PA⊥平面ABCD,F是PC中点。

(Ⅰ)求证:平面PDC⊥平面PAD;

(Ⅱ)求证:BF∥平面PAD。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:

(年龄/岁)

26

27

39

41

49

53

56

58

60

61

(脂肪含量/%)

14.5

17.8

21.2

25.9

26.3

29.6

31.4

33.5

35.2

34.6

根据上表的数据得到如下的散点图.

(1)根据上表中的样本数据及其散点图:

(i)求

(i)计算样本相关系数(精确到0.01),并刻画它们的相关程度.

(2)若关于的线性回归方程为,求的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量.

附:参考数据:img src="http://thumb.zyjl.cn/Upload/2019/08/18/08/786210e5/SYS201908180802150104289801_ST/SYS201908180802150104289801_ST.007.png" width="51" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面平面.四边形为正方形,四边形为梯形,且是边长为1的等边三角形,M为线段中点,.

(1)求证:

(2)求直线与平面所成角的正弦值;

(3)线段上是否存在点N,使得直线平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案