精英家教网 > 高中数学 > 题目详情

为坐标平面上的点,直线为坐标原点)与抛物线交于点(异于).

(1)      若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程

(2)      若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;

(3)      对(1)中点所在圆方程,设是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切. k*s*5*u

解:(1),-----------------------------------------------------2分

代入----------------------------------  4分

时,点 在圆上-------------------------------------------5分

(2)在椭圆上,即

 

在双曲线上--------------------------------------------------------------------10分

(3)的方程为

 ----------------------------------------------------------------------------------------------12分

------------14分

又原点到直线距离 ,即原点到直线的距离恒为

直线恒与圆相切。---------------------------------------------------------15分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)

为坐标平面上的点,直线为坐标原点)与抛物线交于点(异于).

若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程

若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;

对(1)中点所在圆方程,设是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.

查看答案和解析>>

科目:高中数学 来源:2013届江苏南京学大教育专修学校高二五月理科数学试卷(解析版) 题型:填空题

是把坐标平面上的点的横坐标伸长为原来的4倍,纵坐标伸长为原来的3倍的伸压变换,则圆的作用下的新曲线的方程是       

 

查看答案和解析>>

科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(理) 题型:解答题

(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)

为坐标平面上的点,直线为坐标原点)与抛物线交于点(异于).

(1)       若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程

(2)       若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;

(3)       对(1)中点所在圆方程,设是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.

 

查看答案和解析>>

科目:高中数学 来源:2011届永春一中、培元中学、季延中学和石光华侨联中高三第一次统考数 题型:解答题

本题有(1)、(2)、(3)三个选考题,每题7份,请考生任选2题作答,满分14分.

如果多做,则按所做的前两题计分.

选修4系列(本小题满分14分)

   (1)(本小题满分7分)选修4-2:矩阵与变换

是把坐标平面上的点的横坐标伸长到倍,纵坐标伸长到倍的伸压变换.

(Ⅰ)求矩阵的特征值及相应的特征向量;

(Ⅱ)求逆矩阵以及椭圆的作用下的新曲线的方程.

(2) (本小题满分7分)选修4-4:坐标系与参数方程

直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程,曲线C的参数方程为为参数),求曲线C截直线l所得的弦长

(3)(本小题满分7分)选修4—5:不等式选讲

已知,且是正数,求证:.

 

查看答案和解析>>

同步练习册答案