精英家教网 > 高中数学 > 题目详情

【题目】某蛋糕店制作并销售一款蛋糕,制作一个蛋糕成本4元,且以9元的价格出售,若当天卖不完,剩下的则无偿捐献给饲料加工厂.根据以往100天的资料统计,得到如表需求量表:

需求量/

[100110

[110120

[120130

[130140

[140150]

天数

15

25

30

20

10

该蛋糕店一天制作了这款蛋糕XXN)个,以x(单位:个,100≤x≤150xN)表示当天的市场需求量,T(单位:元)表示当天出售这款蛋糕获得的利润.

1)当x135时,若X130时获得的利润为T1X140时获得的利润为T2,试比较T1T2的大小;

2)当X130时,根据上表,从利润T不少于560元的天数中,按需求量分层抽样抽取6天.

i)求此时利润T关于市场需求量x的函数解析式,并求这6天中利润为650元的天数;

ii)再从这6天中抽取3天做进一步分析,设这3天中利润为650元的天数为ξ,求随机变量ξ的分布列及数学期望.

【答案】1T1T2.(2)(i3ii)见解析

【解析】

1X130时,求出T1X140时,求出T2,判断即可.

2)(i)当X130时,利润,求出T≥560时的天数通过分层抽样抽取,求解这6天中利润为650元的天数.

ii)由题意可知ξ0123;求出概率得到分布列,然后求解期望即可.

解:(1X130时,T1130×650元,

X140时,T2135×655元,

T1T2

2)(i)当X130时,利润

T≥560时,即9x520≥560,即120≤x130

650560,所以需求量120≤x≤150,共有60天,

按分层抽样抽取,则这6天中利润为650元的天数为

ii)由题意可知ξ0123

ξ的分布列为:

P

0

1

2

3

ξ

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)函数,讨论的单调性;

2)函数)的图象在点处的切线为,证明:有且只有两个点使得直线与函数的图象也相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数在区间上单调递减,求实数a的取值范围;

2)当,()时,求证:

3)若函数有两个极值点,求证:e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中, ,动点满足:以为直径的圆与轴相切.

(1)求点的轨迹方程;

(2)设点的轨迹为曲线,直线过点且与交于两点,当的面积之和取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数是(

x1”x2”的充分不必要条件;

fx)是其定义域上的可导函数,f'x0)=0”yfx)在x0处有极值的充要条件;

③命题ab,则2a2b1”的否命题为ab,则2a≤2b1”

④若pq为假命题,则pq均为假命题.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

求不等式的解集;

若函数的最小值为,整数满足,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成6组:第1,第2,…,第6,如图是按上述分组方法得到的频率分布直方图.

1)由频率分布直方图估计该校高三年级男生身高的中位数;

2)在这50名男生身高不低于的人中任意抽取2人,则恰有一人身高在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为,点在椭圆上,且面积的最大值为,周长为6.

1)求椭圆的方程,并求椭圆的离心率;

2)已知直线与椭圆交于不同的两点,若在轴上存在点,使得中点的连线与直线垂直,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其右顶点为,下顶点为,定点的面积为,过点作与轴不重合的直线交椭圆两点,直线分别与轴交于两点.

1)求椭圆的方程;

2)试探究的横坐标的乘积是否为定值,若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案