【题目】已知曲线C的参数方程为
(
为参数),P是曲线C上的点且对应的参数为
,
.直线l过点P且倾斜角为
.
(1)求曲线C的普通方程和直线l的参数方程.
(2)已知直线l与x轴,y轴分别交于
,求证:
为定值.
科目:高中数学 来源: 题型:
【题目】近年来,随着国家综合国力的提升和科技的进步,截至
年底,中国铁路运营里程达
万千米,这个数字比
年增长了
倍;高铁运营里程突破
万千米,占世界高铁运营里程的
以上,居世界第一位.如表截取了
年中国高铁密度的发展情况(单位:千米/万平方千米).
年份 |
|
|
|
|
|
年份代码 |
|
|
|
|
|
高铁密度 |
|
|
|
|
|
已知高铁密度
与年份代码
之间满足关系式
(
为大于
的常数).
(1)根据所给数据,求
关于
的回归方程(精确到
位);
(2)利用(1)的结论,预测到哪一年,高铁密度会超过
千米/万平方千米.
参考公式:设具有线性相关系的两个变量
的一组数据为
,则回归方程
的系数:
,![]()
参考数据:
,
,
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
购买金额(元) |
|
|
|
|
|
|
人数 | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根据以上数据完成
列联表,并判断是否有
的把握认为购买金额是否少于60元与性别有关.
不少于60元 | 少于60元 | 合计 | |
男 | 40 | ||
18 | |||
合计 |
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为
(每次抽奖互不影响,且
的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数
(元)的分布列并求其数学期望.
附:参考公式和数据:
,
.
附表:
| 2.072 | 2.706 | 3.841 | 6.635 | 7.879 |
| 0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
购买金额(元) |
|
|
|
|
|
|
人数 | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根据以上数据完成
列联表,并判断是否有
的把握认为购买金额是否少于60元与性别有关.
不少于60元 | 少于60元 | 合计 | |
男 | 40 | ||
18 | |||
合计 |
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为
(每次抽奖互不影响,且
的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数
(元)的分布列并求其数学期望.
附:参考公式和数据:
,
.
附表:
| 2.072 | 2.706 | 3.841 | 6.635 | 7.879 |
| 0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是某省从1月21日至2月24日的新冠肺炎每日新增确诊病例变化曲线图.
![]()
若该省从1月21日至2月24日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列
,
的前n项和为
,则下列说法中正确的是( )
A.数列
是递增数列B.数列
是递增数列
C.数列
的最大项是
D.数列
的最大项是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂
,
两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知
,
生产线生产的产品为合格品的概率分别为
和
.
![]()
(1)从
,
生产线上各抽检一件产品,若使得至少有一件合格的概率不低于
,求
的最小值
.
(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的
作为
的值.
①已知
,
生产线的不合格产品返工后每件产品可分别挽回损失
元和
元。若从两条生产线上各随机抽检
件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?
②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利
元、
元、
元,现从
,
生产线的最终合格品中各随机抽取
件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为
,求
的分布列并估算该厂产量
件时利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,点A是直线
上的动点,过
作直线
,
,线段
的垂直平分线与
交于点
.
(1)求点
的轨迹
的方程;
(2)若点
,
是直线
上两个不同的点,且
的内切圆方程为
,直线
的斜率为
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com