精英家教网 > 高中数学 > 题目详情
15.曲线y=x3-3x2在x=1处的切线方程为(  )
A.3x+y-1=0B.3x+y+1=0C.3x-y-1=0D.3x-y+1=0

分析 求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可.

解答 解:f′(x)=3x2-6x,
则f(1)=-2,f′(1)=-3,
故切线方程是:y+2=-3(x-1),
即3x+y-1=0,
故选:A.

点评 本题考查了切线方程问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,若输出的值为y=5,则满足条件的实数x的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}a•{2^x},x≥0\\{2^{-x}},x<0\end{array}\right.$(a∈R),若f(f(-1))=1,则a=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设曲线$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$与x轴交点为M、N,点P在曲线上,则PM与PN所在直线的斜率之积为(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C的对边分别为a,b,c,满足((2b-c)cosA=acosc
(Ⅰ)求角A的大小;
(Ⅱ)若a=3,△ABC的面积是$\frac{{9\sqrt{3}}}{4}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取出一件,结果不是三等品,则取到的是一等品的概率为:$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某程序每运行一次都随机产生一个五位的二进制数A=,其中A的各位数字中,a1=1,且ak(k=2,3,4,5)为0和1的概率分别是$\frac{1}{4}$和$\frac{3}{4}$.记ξ=a1+a2+a3+a4+a5,当程序运行一次时:
(Ⅰ)求ξ的分布列;
(Ⅱ)求ξ的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.从A地到B地有3种乘车方式,从B地到C地有2种乘车方式,从A地经B地去C地,不同的乘车方式有6种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若sinθ>0且cosθ<0,则θ是第二象限角,若sinθ•tanθ<0,则θ是第二、三象限角.

查看答案和解析>>

同步练习册答案