【题目】已知在正项数列
中,首项
,点
在双曲线
上,数列
中,点
在直线
上,其中
是数列
的前
项和.
(1)求数列
、
的通项公式;
(2)若
,求证: 数列
为递减数列.
【答案】(1)
;
(2)见解析
【解析】
(1)由题意可得
﹣
=1,即数列{
}是等差数列,同样Tn
bn+1,利用两式作差即可得到
的通项公式;
(2)根据(1)求得{an}的通项公式和数列{bn}的通项公式,进而可得{cn}的通项公式,进而可得cn+1﹣cn的表达式,根据表达式小于零,原式得证.
解:(1)由已知点An(
,
)在曲线y2﹣x2=1上知
﹣
=1.
所以数列{
}是一个以2为首项,公差为1的等差数列,
所以
=
+(n﹣1)d=2+n﹣1=n+1,
点(bn,Tn)在直线y
x+1上,所以Tn
bn+1①
Tn﹣1
bn﹣1+1②
两式相减得bn
bn
bn﹣1
∴bn
bn﹣1
令n=1得b1
b1+1所以b1
.
所以数列{bn}是以
为首项,以
为公比的等比数列,
所以bn
(
)n﹣1
;
(2)证明:cn=anbn=(n+1)
,
所以cn+1﹣cn=(n+2)
(n+1)![]()
[(n+2)﹣3(n+1)]
(n+2﹣3n﹣3)
(﹣2n﹣1)<0
故cn+1<cn.
∴数列
为递减数列.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且AB=1,BC=2, ∠ABC=60°,PA⊥平面ABCD,AE⊥PC于E,
![]()
下列四个结论:①AB⊥AC;②AB⊥平面PAC;③PC⊥平面ABE;④BE⊥PC.正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平行四边形
中,
,
,
为
边的中点,沿
将
折起使得平面
平面
.
![]()
(1)求证:平面
平面
;
(2)求四棱锥
的体积;
(3)求折后直线
与平面
所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:![]()
的两个焦点为
,
,焦距为
,直线
:
与椭圆
相交于
,
两点,
为弦
的中点.
(1)求椭圆的标准方程;
(2)若直线
:
与椭圆
相交于不同的两点
,
,
,若
(
为坐标原点),求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
上一点
,
与
关于抛物线的对称轴对称,斜率为1的直线交抛物线于
、
两点,且
、
在直线
两侧.
(1)求证:
平分
;
(2)点
为抛物线在
、
处切线的交点,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
与抛物线
:
交于
,
两点,且
的面积为16(
为坐标原点).
(1)求
的方程.
(2)直线
经过
的焦点
且
不与
轴垂直,
与
交于
,
两点,若线段
的垂直平分线与
轴交于点
,试问在
轴上是否存在点
,使
为定值?若存在,求该定值及
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线
的参数方程为
(
为参数),圆
的极坐标方程为
.
(1)求直线
的普通方程与圆
的直角坐标方程;
(2)设圆
与直线
交于
两点,若点
的直角坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥
的四个顶点都在球
的表面上,
平面
,
,
,
,
,则:(1)球
的表面积为__________;(2)若
是
的中点,过点
作球
的截面,则截面面积的最小值是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com