【题目】设f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥
对任意实数a≠0恒成立,求实数x的取值范围.
【答案】
(1)解:由f(x)≤x+2得:
或
或
,
即有1≤x≤2或0≤x<1或x∈,
解得0≤x≤2,
所以f(x)≤x+2的解集为[0,2]
(2)解:
=|1+
|﹣|2﹣
|≤|1+
+2﹣
|=3,
当且仅当(1+
)(2﹣
)≤0时,取等号.
由不等式f(x)≥
对任意实数a≠0恒成立,
可得|x﹣1|+|x+1|≥3,即
或
或
,
解得x≤﹣
或x≥
,
故实数x的取值范围是(﹣∞,﹣
]∪[
,+∞)
【解析】(1)运用绝对值的含义,对x讨论,分x≥1,﹣1<x<1,x≤﹣1,去掉绝对值,得到不等式组,解出它们,再求并集即可得到解集;(2)运用绝对值不等式的性质,可得不等式右边的最大值为3,再由不等式恒成立思想可得f(x)≥3,再由去绝对值的方法,即可解得x的范围.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣2ax,a∈R.
(Ⅰ)若函数y=f(x)存在与直线2x﹣y=0垂直的切线,求实数a的取值范围;
(Ⅱ)设g(x)=f(x)+
,若g(x)有极大值点x1 , 求证:
>a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图放置的边长为2的正三角形
沿
轴滚动,记滚动过程中顶点
的横、纵坐标分别为
和
,设
是
的函数,记
,则下列说法中:
![]()
①函数
的图像关于
轴对称;
②函数
的值域是
;
③函数
在
上是增函数;
④函数
与
在
上有
个交点.
其中正确说法的序号是_______.
说明:“正三角形
沿
轴滚动”包括沿
轴正方向和沿
轴负方向滚动.沿
轴正方向滚动指的是先以顶点B为中心顺时针旋转,当顶点C落在
轴上时,再以顶点C为中心顺时针旋转,如此继续.类似地,正三角形
可以沿
轴负方向滚动.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,ABC﹣A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°. ![]()
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值为
,求三棱锥C1﹣A1CD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线C:y2=2px的焦点为F,抛物线上一定点Q(1,2).![]()
(1)求抛物线C的方程及准线l的方程;
(2)过焦点F的直线(不经过Q点)与抛物线交于A,B两点,与准线l交于点M,记QA,QB,QM的斜率分别为k1 , k2 , k3 , 问是否存在常数λ,使得k1+k2=λk3成立?若存在λ,求出λ的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=2cos2x的图象向右平移
个单位后得到函数g(x)的图象,若函数g(x)在区间[0,
]和[2a,
]上均单调递增,则实数a的取值范围是( )
A.[
,
]
B.[
,
]
C.[
,
]
D.[
,
]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:
①对于任意一个圆O,其“优美函数“有无数个”;
②函数
可以是某个圆的“优美函数”;
③正弦函数y=sinx可以同时是无数个圆的“优美函数”;
④函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.
其中正确的命题是( )![]()
A.①③
B.①③④
C.②③
D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线C:y2=2px的焦点为F,抛物线上一定点Q(1,2).![]()
(1)求抛物线C的方程及准线l的方程;
(2)过焦点F的直线(不经过Q点)与抛物线交于A,B两点,与准线l交于点M,记QA,QB,QM的斜率分别为k1 , k2 , k3 , 问是否存在常数λ,使得k1+k2=λk3成立?若存在λ,求出λ的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研小组研究发现:一棵水蜜桃树的产量
(单位:百千克)与肥料费用
(单位:百元)满足如下关系:
,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)
百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为
(单位:百元).
(1)求利润函数
的函数关系式,并写出定义域;
(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com