精英家教网 > 高中数学 > 题目详情
9.某舰艇在A处测得遇险渔船在北偏东45°方向上的C处,且到A的距离为10海里,此时得知,该渔船沿南偏东75°方向,以每小时9海里的速度向一小岛靠近,舰艇的速度为21海里/小时,则舰艇到达渔船的最短时间是$\frac{2}{3}$小时.

分析 设两船在B点相遇,设舰艇到达渔船的最短时间是x小时,由题设知AC=10,AB=21x,BC=9x,∠ACB=120°,由余弦定理,知(21x)2=100+(9x)2-2×10×9x×cos120°,由此能求出舰艇到达渔船的最短时间.

解答 解:设两船在B点相遇,由题设作出图形,
设舰艇到达渔船的最短时间是x小时,
则AC=10,AB=21x,BC=9x,∠ACB=120°,
由余弦定理,知(21x)2=100+(9x)2-2×10×9x×cos120°,
整理,得36x2-9x-10=0,
解得x=$\frac{2}{3}$,或x=-$\frac{5}{12}$(舍).
答:舰艇到达渔船的最短时间是$\frac{2}{3}$小时.
故答案为:$\frac{2}{3}$.

点评 本题考查解三角形在生产实际中的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,是高考的重点,易错点是知识体系不牢固.解题时要注意余弦定理和数形结合思想的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某服装超市举办了一次有奖促销活动,顾客消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.
方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性抽出3个小球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸到2个红球则打6折,若摸到1个红球,则打7折;若没有摸到红球,则不打折;
方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回的摸取,连续3次,每摸到1个红球,立减200元.
(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;
(2)若某顾客消费恰好满1000元,则该顾客选择哪种抽奖方案更合适?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线且l:mx+y+3m-$\sqrt{3}$=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2$\sqrt{3}$,则|CD|=(  )
A.4B.6C.2$\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=$\sqrt{3}$,∠ABC=60°.
(Ⅰ)证明:AB⊥A1C;
(Ⅱ)求二面角A-A1C-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=x+$\frac{(2a-1)x+1}{x}$为奇函数,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列四种说法:
①函数$y=-\frac{1}{x}$在R上单调递增;
②若函数y=x2+2ax+1在(-∞,-1]上单调递减,则a≤1;
③若log0.7(2m)<log0.7(m-1),则m>-1;
④若f(x)是定义在R上的奇函数,则f(1-x)+f(x-1)=0.
其中正确的序号是(  )
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x2-2x的单调递减区间为(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2$\sqrt{3}$sinxcosx-2sin2x,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若a>1,则不等式|x|+a>1的解集是(  )
A.{x|a-1<x<1-a}B.{x|x<a-1或x>1-a}C.D.R

查看答案和解析>>

同步练习册答案