【题目】某运输公司有
名驾驶员和
名工人,有
辆载重量为
吨的甲型卡车和
辆载重量为
吨的乙型卡车.某天需运往
地至少
吨的货物,派用的车需满载且只运送一次.派用的每辆甲型卡车需配
名工人,运送一次可得利润
元:派用的每辆乙型卡车需配
名工人,运送一次可得利润
元,该公司合理计划当天派用两类卡车的车辆数,可得的最大利润多少?
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)若
上恰有2个点到
的距离等于
,求
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
的面积为
,且与
轴、
轴分别交于
两点.
(1)求圆
的方程;
(2)若直线
与线段
相交,求实数
的取值范围;
(3)试讨论直线
与(1)小题所求圆
的交点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
、
分别是椭圆
的左、右焦点.
(1)若
是该椭圆上的一个动点,求
的最大值;
(2)设过定点
的直线
与椭圆交于不同的两点
、
,且
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现代城市大多是棋盘式布局(如北京道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义
,
两点间的“直角距离”为:
.
![]()
(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”为2的“格点”的坐标.(格点指横、纵坐标均为整数的点)
(2)求到两定点
、
的“直角距离”和为定值
的动点轨迹方程,并在直角坐标系内作出该动点的轨迹.(在以下三个条件中任选一个做答)
①
,
,
;
②
,
,
;
③
,
,
.
(3)写出同时满足以下两个条件的“格点”的坐标,并说明理由(格点指横、纵坐标均为整数的点).
①到
,
两点“直角距离”相等;
②到
,
两点“直角距离”和最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E:
(a>b>0)的离心率为
,F是椭圆E的右焦点,直线AF的斜率为
,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,棱长为2,M,N分别为A1B,AC的中点.
![]()
(1)证明:MN//B1C;
(2)求A1B与平面A1B1CD所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形
中,
为
的中点,将
沿直线
翻折成
,连结
,
为
的中点,则在翻折过程中,下列说法中所有正确的序号是_______.
①存在某个位置,使得
;
②翻折过程中,
的长是定值;
③若
,则
;
④若
,当三棱锥
的体积最大时,三棱锥
的外接球的表面积是
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
:
与圆
:
相切,并且椭圆
上动点与圆
上动点间距离最大值为
.
![]()
(1)求椭圆
的方程;
(2)过点
作两条互相垂直的直线
,
,
与
交于
两点,
与圆
的另一交点为
,求
面积的最大值,并求取得最大值时直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com