【题目】小军的微信朋友圈参与了“微信运动”,他随机选取了40位微信好友(女20人,男20人),统计其在某一天的走路步数.其中,女性好友的走路步数数据记录如下:
5860 8520 7326 6798 7325 8430 3216 7453 11754 9860
8753 6450 7290 4850 10223 9763 7988 9176 6421 5980
男性好友走路的步数情况可分为五个类别(说明:m~n表示大于等于m,小于等于n):A(0~2000步)1人,B(2001~5000步)2人,C(5001~8000步)3人,D(8001~10000步)6人,E(10001步及以上)8人.若某人一天的走路步数超过8000步被系统认定为“健康型”,否则被系统认定为“进步型”.
(1)请根据选取的样本数据完成下面的
列联表,并根据此判断能否有95%以上的把握认为“认定类型”与“性别”有关?
健康型 | 进步型 | 总计 | |
男 | 20 | ||
女 | 20 | ||
总计 | 40 |
(2)从小军的40位好友中该天走路步数不超过5000的中随机抽取3人,若
表示抽到的三人分别是x,y,z,试用该表示法列举出试验所有可能的结果.若记“恰好抽到了一位女性好友”为事件A,求事件A的概率.
附:
,![]()
| 0.100 | 0.050 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
【答案】
健康型 | 进步型 | 总计 | |
男 | 14 | 6 | 20 |
女 | 8 | 12 | 20 |
总计 | 22 | 18 | 40 |
没有95%以上的把握认为“认定类型”与“性别”有关;
(2)
.
【解析】
(1)根据题中给的定义,结合所得的数据填表即可,再根据题中所给的公式和所填写的表格进行计算求出
的值,最后判断即可;
(2)用列举法列出试验所有可能的结果,然后根据古典概型计算公式进行求解即可.
(1)根据数据可知:女性好友健康型有8人,进步型有12人;男性好友健康型有14人,进步型有6人,填表如下:
健康型 | 进步型 | 总计 | |
男 | 14 | 6 | 20 |
女 | 8 | 12 | 20 |
总计 | 22 | 18 | 40 |
因为
,所以没有95%以上的把握认为“认定类型”与“性别”有关;
(2)小军的40位好友中该天走路步数不超过5000的有女性好友2人,设为
,男性好友有3人,设为
.随机抽取三人,所以的可能组合如下:
,共10种情形,其中恰好抽到了一位女性好友”,共有6种情形,所以事件A的概率
.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线
的极坐标方程为
.现以极点
为原点,极轴为
轴的非负半轴建立平面直角坐标系,直线
的参数方程为
(
为参数).
(1)求曲线
的直角坐标系方程和直线
的普通方程;
(2)点
在曲线
上,且到直线
的距离为
,求符合条件的
点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,原点为
,抛物线
的方程为
,线段
是抛物线
的一条动弦.
(1)求抛物线
的准线方程和焦点坐标
;
(2)当
时,设圆
:
,若存在两条动弦
,满足直线
与圆
相切,求半径
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为
(m为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
ρcosθ
ρsinθ
2
=0.
(1)求C和l的直角坐标方程;
(2)设直线l与曲线C的公共点为P,Q,求|PQ|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程是
,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程;
(2)设曲线
交于点
,曲线
与
轴交于点
,求线段
的中点到点
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天干地支,简称为干支,源自中国远古时代对天象的观测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com