精英家教网 > 高中数学 > 题目详情
“p且q是真命题”是“非p为假命题”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也木必要条件
【答案】分析:本题考查判断充要条件的方法,可以根据充要条件的定义判断,本题关键是复合命题真假的判断.
解答:解:由p且q是真命题知,p和q均为真命题,所以非p为假命题,所以“p且q是真命题”是“非p为假命题”的充分条件;由非p为假命题知,p为真命题,但q真假不知,故无法判断p且q真假,所以“p且q是真命题”是“非p为假命题”的不必要条件.
故选A
点评:判断充要条件的方法是:
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“p且q是真命题”是“p或q是真命题”的(  )条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:存在x∈[1,2],使得x2-a≥0,命题q:指数函数y=(log2a)x是R上的增函数,若命题“p且q”是真命题,则实数a的取值范围是
(2,4](填{a|2<a≤4}或2<a≤4亦可)
(2,4](填{a|2<a≤4}或2<a≤4亦可)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①“x=2”是“x2=4”的充分不必要条件;
②设A={x||x|≤3},B={y|y=-x2+t},若A∩B=∅,则实数t的取值范围为[3,+∞);
③若log2x+logx2≥2,则x>1;
④存在x,y∈R,使sin(x-y)=sinx-siny;
⑤若命题P:对任意的x∈R,函数y=cos(2x-
π
3
)
的递减区间为[kπ-
π
12
,kπ+
12
](k∈Z)
,命题q:存在x∈R,使tanx=1,则命题“p且q”是真命题.
其中真命题的序号为
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“对任意x∈[1,2],x2-a≥0”,命题q:“存在x∈R,x2+2ax+2-a=0”若命题“p且q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:存在a∈R,曲线x2+
y2
a
=1
为双曲线;命题q:
x-1
x-2
≤0
的解集是{x|1<x<2}.给出下列结论:
①命题“p且q”是真命题;      
②命题“p且(?q)”是真命题;
③命题“(?p)或q”为真命题;  
④命题“(?p)或(?q)”是真命题.
其中正确的是
②④
②④

查看答案和解析>>

同步练习册答案