【题目】在正三棱锥
中,侧棱长为3,底面边长为2,E,F分别为棱AB,CD的中点,则下列命题正确的是( )
A.EF与AD所成角的正切值为
B.EF与AD所成角的正切值为![]()
C.AB与面ACD所成角的余弦值为
D.AB与面ACD所成角的余弦值为![]()
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,椭圆
(
)的短轴长为2,椭圆
上的点到右焦点距离的最大值为
.过点
作斜率为
的直线
交椭圆
于
,
两点(
,
),
是线段
的中点,直线
交椭圆
于
,
两点.
(1)求椭圆
的标准方程;
(2)若
,
,求
的值;
(3)若存在直线
,使得四边形
为平行四边形,求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P在直线l:y=x-1上,若存在过点P的直线交抛物线
于A,B两点,且|PA|=|AB|,则称点P为“正点”,那么下列结论中正确的是( )
A.直线l上的所有点都是“正点”
B.直线l上仅有有限个点是“正点”
C.直线l上的所有点都不是“正点”
D.直线l上有无穷多个点(但不是所有的点)是“正点”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(2,2),圆
,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求点M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区某农产品近几年的产量统计如下表:
![]()
(1)根据表中数据,建立
关于
的线性回归方程
;
(2)若近几年该农产品每千克的价格
(单位:元)与年产量
满足的函数关系式为
,且每年该农产品都能售完.
①根据(1)中所建立的回归方程预测该地区
年该农产品的产量;
②当
为何值时,销售额
最大?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】农机公司出售收割机,一台收割机的使用寿命为五年,在农机公司购买收割机时可以一次性额外订购买若干次维修服务,费用为每次100元,每次维修时公司维修人员均上门服务,实际上门服务时还需支付维修人员的餐饮费50元/次;若实际维修次数少于购买的维修次数,则未提供服务的订购费用退还50%;如果维修次数超过了购买的次数,农机公司不再提供服务,收割机的维修只能到私人维修店,每次维修费用为400元,无须支付餐饮费;--位农机手在购买收割机时,需决策一次性购买多少次维修服务.
为此,他拟范收集整理出一台收割机在五年使用期内维修次数及相应的频率如下表:
![]()
(1)如果农机手在购买收割机时购买了6次维修,在使用期内实际维修的次数为5次,这位农机手的花费总费用是多少?如果实际维修的次数是8次,农机手的花费总费用又是多少?
(2)农机手购买了一台收制机,试在购买维修次数为6次和7次的两个数据中,根据使用期内维修时花费的总费用期望值,帮助农机手进行决策.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得
分,回答不正确得
分,第三个问题回答正确得
分,回答不正确得
分.如果一个挑战者回答前两个问题正确的概率都是
,回答第三个问题正确的概率为
,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题总分不低于
分就算闯关成功.
(Ⅰ)求至少回答对一个问题的概率;
(Ⅱ)求这位挑战者回答这三个问题的总得分X的分布列;
(Ⅲ)求这位挑战者闯关成功的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com