(本小题满分12分)
如图,在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证AC⊥BC1;
(2)求异面直线AC1与B1C所成角的余弦值;
(3)求平面CDB1与平面ABC的夹角的余弦值.
解:∵直三棱柱ABC—A1B1C1底面三边长AC=3,BC=4,AB=5,
∴AC,BC,C1C两两垂直.
如图,以C为坐标原点,直线CA,CB,CC1分别为x轴,
y轴,z轴,建立空间直角坐标系,
则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),
B1(0,4,4),D(
,2,0). ………………2分
(1)![]()
………………4分
(2)![]()
![]()
∴异面直线AC1与B1C所成角的余弦值为
………………8分
(3)![]()
设
为平面CDB1的法向量.
由
得:
取
…………10分
又平面ABC的一个法向量
.
∴
.
所以平面CDB1与平面ABC的夹角的余弦值是
。…………12分
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com