精英家教网 > 高中数学 > 题目详情
设函数f(x)=
12a
x2-lnx(x>0)
,其中a为非零常数,
(1)当a=1时,求函数f(x)的单调区间.
(2)当x∈[1,2]时,不等式f(x)>2恒成立,求实数a的取值范围.
分析:(1)求出导函数,当a=1时写出函数式,对函数求导,f′(x)>0,得到f(x)在(1,+∞)上递增,得到函数的增区间.
(2)利用(1)的单调性,求出函数f(x)的极值,进一步求出函数的最值,得到参数a的范围.
解答:解:(1)∵函数f(x)=
1
2a
x2-lnx(x>0)
,其中a为非零常数,
当a=1时,f(x)=
1
2
x2-lnx

f(x)=x-
1
x
>0,
∴当x>1时,函数是一个增函数,
即函数的递增区间是(1,+∞)
(2)当x属于[1,2],lnx>0,
当a>0时,命题可转化为对于任意x属于[1,2],都有a<
x2
2(2+lnx)

令g(x)=
x2
2(2+lnx)
,对函数求导得g(x)=
6x+4xlnx
4(2+lnx)2
=0
∴x=e-
3
2
时,导数等于零,
经验证这是函数的极小值,
在这个闭区间上也是最小值,
∴g(x)的最小值是g(e-
3
2
)=e-3
即当a为大于0常数且小于e-3时,不等式f(x)>2恒成立,
当a<0时,
1
2a
lnx+2
x2
在x属于[1,2]时,不合题意.
综上可知a的取值范围是(0,e-3
点评:利用导数求函数的在区间上的最值,应该先求出导函数,判断出导函数的符号得到函数的单调性,求出函数的极值,同时求出函数的区间端点值,选出最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)x-7 (x<0)
x
 
(x≥0)
,若f(a)<1
,则实数a的取值范围是(  )
A、(-∞,-3)
B、(1,+∞)
C、(-3,1)
D、(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)x-1,x≥0
x2,x<0
与函数g(x)的图象关于直线y=x对称,则当x>0时,g(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)
x
 (x≤0)
x
1
2
     (x>0)
,若f(x0)>2,则x0的取值范围是(  )
A、(-1,4)
B、(-1,+∞)
C、(4,+∞)
D、(-∞,-1)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)x-3(x≤0)
x
1
2
(x>0)
,已知f(a)>1,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(
1
2
)x+1(x<-1)
-x2+2(-1≤x≤2)
3x-8(x>2)

(Ⅰ)请在下列直角坐标系中画出函数f(x)的图象;
(Ⅱ)根据(Ⅰ)的图象,试分别写出关于x的方程f(x)=t有2,3,4个实数解时,相应的实数t的取值范围;
(Ⅲ)记函数g(x)的定义域为D,若存在x0∈D,使g(x0)=x0成立,则称点(x0,x0)为函数g(x)图象上的不动点.试问,函数f(x)图象上是否存在不动点,若存在,求出不动点的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案