精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=
2
,E、F分别为PC、BD的中点.
(I)求证:EF∥平面PAD;
(Ⅱ)求三棱锥P-BCD的体积.
分析:(I)连接AC,由条件证明EF为三角形CPA的中位线,可得EF∥PA.再由直线和平面平行的判定定理可得 EF∥平面PAD.
(Ⅱ)取AD得中点O,由侧面PAD⊥底面ABCD,且PA=PD=
2
,可得PO垂直平面ABCD,且PO=1.再根据三棱锥P-BCD的体积V=
1
3
•S△BCD•PO,运算求得结果.
解答:解:(I)证明:连接AC,由于E、F分别为PC、BD的中点,底面ABCD是边长为2的正方形,则EF为三角形CPA的中位线,
故有 EF∥PA.
再由PA?平面PAD,EF不在平面PAD内,可得EF∥平面PAD.
(Ⅱ)取AD得中点O,∵侧面PAD⊥底面ABCD,且PA=PD=
2
,则PO垂直平面ABCD,且PO=
PA2-AO2
=1.
故三棱锥P-BCD的体积V=
1
3
•S△BCD•PO=
1
3
1
2
•2•2
•1=
2
3
点评:本题主要考查直线和平面平行的判定定理的应用,求三棱锥的体积,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案