在四棱锥
中,底面
是正方形,侧面
是正三角形,平面
底面
.![]()
(I) 证明:
平面
;
(II)求二面角
的余弦值.
(I)见解析;(II)
.
解析试题分析:(I)因为平面VAD⊥平面ABCD,平面VAD∩平面ABCD=AD,又AB在平面ABCD内,AD⊥AB,
所以AB⊥平面VAD;(II)法一:先做出所求二面角的平面角,再由余弦定理求平面角的余弦值,既得所求;法二:设AD的中点为O,连结VO,则VO⊥底面ABCD,又设正方形边长为1,建立空间直角坐标系,写出各个点的空间坐标,分别求平面VAD的法向量和平面VDB的法向量,可得结论.
试题解析:(Ⅰ)因为平面VAD⊥平面ABCD,平面VAD∩平面ABCD=AD,又AB在平面ABCD内,AD⊥AB,
所以AB⊥平面VAD. 3分
(Ⅱ)由(Ⅰ)知AD⊥AB,AB⊥AV.依题意设AB=AD=AV=1,所以BV=BD=
. 6分![]()
设VD的中点为E,连结AE、BE,则AE⊥VD,BE⊥VD,
所以∠AEB是面VDA与面VDB所成二面角的平面角. 9分
又AE=
,BE=
,所以cos∠AEB=
=
.
12分
(方法二)
(Ⅰ)同方法一. 3分
(Ⅱ)设AD的中点为O,连结VO,则VO⊥底面ABCD.
又设正方形边长为1,建立空间直角坐标系如图所示. 4分![]()
则,A(
,0,0), B(
,1,0),
D(
,0,0), V(0,0,
);
7分
由(Ⅰ)知![]()
是平面VAD的法向量.设
是平面VDB的法向量,则
10分
∴
,
考点:1、面面垂直的性质;2、二面角的求法.
科目:高中数学 来源: 题型:解答题
如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
CD=1,PD=
。![]()
(I)若M为PA中点,求证:AC∥平面MDE;
(II)求直线PA与平面PBC所成角的正弦值;
(III)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为
?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE,
=45
,O是BC的中点,AO=
,且BC=6,AD=AE=2CD=2
,![]()
(1)证明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.![]()
(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com