精英家教网 > 高中数学 > 题目详情
14.在如图所示的平面图形中,已知CD=$\sqrt{2}$,∠BCA=45°,∠ACD=105°,∠CDB=15°,∠BDA=30°.
(Ⅰ)求△BCD的面积;
(Ⅱ)求AC,AB的长.

分析 (Ⅰ)推导出∠BCD=150°,∠DBC=15°,从而BC=DC=$\sqrt{2}$,△BCD的面积${S}_{△BCD}=\frac{1}{2}×BC×DC×sin∠BCD$,由此能求出结果.
(Ⅱ)先求出∠DAC=30°,∠ADC=45°,由此利用正弦定理能求出AC,利用余弦定理能求出出AB.

解答 解:(Ⅰ)∵CD=$\sqrt{2}$,∠BCA=45°,∠ACD=105°,∠CDB=15°,∠BDA=30°.
∴∠BCD=105°+45°=150°,∠DBC=15°,
∴BC=DC=$\sqrt{2}$,
∴△BCD的面积${S}_{△BCD}=\frac{1}{2}×BC×DC×sin∠BCD$=$\frac{1}{2}×\sqrt{2}×\sqrt{2}×sin120°$=$\frac{\sqrt{3}}{2}$.
(Ⅱ)∠DAC=180°-(15°+30°)-105°=30°,∠ADC=30°+15°=45°,
由正弦定理得:$\frac{DC}{sin∠DAC}=\frac{AC}{sin∠ADC}$,
∴AC=$\frac{DC×sin∠ADC}{sin∠DAC}$=$\frac{\sqrt{2}×sin45°}{sin30°}$=2.
由余弦定理得:
AB=$\sqrt{A{C}^{2}+{BC}^{2}-2×AC×BC×cos∠ACB}$=$\sqrt{4+2-2×2×\sqrt{2}×cos45°}$=$\sqrt{2}$.

点评 本题考查三角形面积的求法,考查三角形边长的求法,考查正弦定理、余弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{{{e^x}+1}}{{{e^x}-1}}$•cosx的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为(  )
A.12B.14C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,}&{x<0}\\{\frac{1}{x},}&{x>0}\end{array}\right.$的图象上存在不同的两点A、B,使得曲线y=f(x)在这两点处的切线重合,则实数a的取值范围是(  )
A.($\frac{1}{4}$,+∞)B.(2,+∞)C.(-∞,2)D.(-1,$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在封闭直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=15,BC=8,AA1=5,则V的最大值是(  )
A.$\frac{9π}{2}$B.$\frac{125π}{6}$C.$\frac{32π}{3}$D.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据
患流感未患流感
服用药218
未服用药812
根据表中数据,通过计算统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,并参考以下临界数据:
P(K2>k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.828
若由此认为“该药物有效”,则该结论出错的概率不超过(  )
A.0.05B.0.025C.0.01D.0.005

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某企业想通过做广告来提高销售额,经预测可知本企业产品的广告费x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070
由表中的数据得线性回归方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=6.5,由此预测当广告费为7百万元时,销售额为6300万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数m,n满足logam>logan(a>1),则下列关系式不恒成立的是(  )
A.|m|>|n|B.($\frac{1}{2}$)m<($\frac{1}{2}$)nC.sinm>sinnD.m${\;}^{\frac{1}{2}}$>n${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等比数列{an}中,“a4,a12是方程x2+3x+1=0的两根”是“a8=±1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案