精英家教网 > 高中数学 > 题目详情

(本题满分14分)

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到的距离为

(Ⅰ)求椭圆的方程和其“准圆”方程;

(Ⅱ)点P是椭圆C的“准圆”上的一个动点,过点P作直线,使得与椭圆C都只有一个交点,且分别交其“准圆”于点M,N

(1)当P为“准圆”与轴正半轴的交点时,求的方程;

(2)求证:|MN|为定值.

 

 

 

(本题满分14分)

解:(I)因为,所以

所以椭圆的方程为,    …………………………………3分

=2, 所以准圆的方程为. ………………………4分

(II)(1)因为准圆轴正半轴的交点为P(0,2),

设过点P(0,2),且与椭圆有一个公共点的直线为

所以,消去y ,得到 , …………6分

因为椭圆与只有一个公共点, 所以

解得.所以方程为.          ……………9分

(2)①当中有一条无斜率时,不妨设无斜率,

因为与椭圆只有一个公共点,则其方程为

方程为时,此时与准圆交于点

此时经过点(或)且与椭圆只有一个公共点的直线是

(或),即(或),显然直线垂直;

同理可证 方程为时,直线垂直.        ……………11分

② 当都有斜率时,设点,其中

设经过点与椭圆只有一个公共点的直线为,

,消去得到

,

经过化简得到:,

因为,所以有,

的斜率分别为,因为与椭圆都只有一个公共点,

所以满足上述方程,

所以,即垂直.       ………………………………………13分

综合①②知:

因为经过点,又分别交其准圆于点M,N,且垂直,

所以线段MN为准圆的直径,所以|MN|=4. ……………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案