精英家教网 > 高中数学 > 题目详情
在函数f(x)=x2(x>0)的图象上依次取点列Pn满足:Pn(n,f(n)),n=1,2,3,….设A为平面上任意一点,若A关于P1的对称点为A1,A1关于P2的对称点为A2,…,依此类推,可在平面上得相应点列A,A1,A2,…,An.则当n为偶数时,向量的坐标为   
【答案】分析:利用向量的运算法则将 有以Pn为起点终点的向量表示,利用向量的坐标公式求出各向量的坐标,利用等比数列的前n项和公式求出向量的坐标.
解答:解:=++…+
由于 =,得 =2( ++…+
=2({1,2}+{1,23}+…+{1,2n-1})=2{ }={n,}
故答案为:(n,
点评:本题考查中点坐标公式、向量的坐标公式、图象的平移变换、等比数列的前n项和公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…
(1)证明数列{lg(1+an)}是等比数列;
(2)设Tn=(1+a1)(1+a2)…(1+an),求Tn及数列{an}的通项;
(3)记bn=
1
an
+
1
an+2
,求数列{bn}的前n项Sn,并证明Sn+
2
3Tn-1
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

形如
ab
cd
的式子叫做二行二列矩阵,定义矩阵的一种运算
ab
cd
x
y
=
ax+bx
cx+dy
.该运算的几何意义为平面上的点(x,y)在矩阵
ab
cd
的作用下变换成点(ax+by,cx+dy).
(1)设点M(-2,1)在
01
10
的作用下变换成点M′,求点M′的坐标;
(2)设数列{an} 的前n项和为Sn ,且对任意正整数n,点A(Sn,n)在
01
10
的作用下变换成的点A′在函数f(x)=x2+x的图象上,求an的表达式;
(3)在(2)的条件下,设bn为数列{1-
1
an
}的前n项的积,是否存在实数a使得不等式bn
an+1
<a
对一切n∈N*都成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(2,3)在函数f(x)=x2-a,x∈(1,+∞)的图象上,则f(x)的反函数f-1(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…
(1)证明:数列{lg(1+an)}是等比数列,并求数列{an}的通项公式;
(2)记bn=
1
an
+
1
an+2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且过点Pn(n,Sn)的切线的斜率为kn
(1)求数列{an}的通项公式;
(2)设Q={x|x=kn,n∈N*},R={x|x=2an,n∈N*},等差数列{cn}的任一项cn∈Q∩R,其中c1是Q∩R中的最小数,110<c10<115,求{cn}的通项公式.

查看答案和解析>>

同步练习册答案